Small sample learning optimization for Resnet based SAR target recognition

Zhenzhen Fu, Fan Zhang, Qiang Yin, Ruirui Li, Wei Hu, Wei Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Citations (Scopus)

Abstract

Deep convolutional neural network (CNN) is an important branch of deep learning. Due to its strong ability of feature extraction, CNN models have been introduced to solve the problems of synthetic aperture radar automatic target recognition (SAR-ATR). However, labeled SAR images are difficult to acquire. Therefore, how to obtain a good recognition result from a small sample dataset is what we mainly focus on. In theory, a deeper network can bring a better training result. But it also brings more difficulties to the training process, especially with limited labeled training data. The residual learning which proposed in recent years can alleviate this problem effectively. In this paper, we use a deep residual network, and introduce the dropout layer into the building block to alleviate overfitting caused by limited SAR data. In order to improve the training effect, the new loss function center loss is adopted and combined with softmax loss as the supervision signal to train the deep CNN. The experimental results show that our method can achieve the classification accuracy of 99.67% with all training data, without data augmentation or pre-training. When data of the training dataset was reduced to 20%, we can still achieve a recognition result higher than 94%.

Original languageEnglish
Title of host publication2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2330-2333
Number of pages4
ISBN (Electronic)9781538671504
DOIs
Publication statusPublished - 31 Oct 2018
Externally publishedYes
Event38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, Spain
Duration: 22 Jul 201827 Jul 2018

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2018-July

Conference

Conference38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
Country/TerritorySpain
CityValencia
Period22/07/1827/07/18

Keywords

  • Automatic target recognition (ATR)
  • Center loss
  • Convolutional neural network (CNN)
  • Limited labeled data
  • Residual learning
  • Synthetic aperture radar (SAR)

Fingerprint

Dive into the research topics of 'Small sample learning optimization for Resnet based SAR target recognition'. Together they form a unique fingerprint.

Cite this