SLAT-Calib: Extrinsic calibration between a sparse 3D LiDAR and a limited-FOV low-resolution thermal camera

Jun Zhang, Ran Zhang, Yufeng Yue*, Chule Yang, Mingxing Wen, Danwei Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Citations (Scopus)

Abstract

Accurate estimation of extrinsic parameter (rotation matrix and translation vector) between heterogeneous sensors is important for fusing complementary information. However, the extrinsic calibration between a sparse 3D LiDAR and a thermal camera is challenging, mainly because of the difficulties to accurately extract common features from a sparse point cloud and a thermal image which has limited-FOV and low-resolution. Previous methods either rely on a dense depth sensor or a visual camera to facilitate the feature extraction process. To address the problem, SLAT-Calib (Sparse Lidar And Thermal camera Calibration) is proposed. By observing that circular holes could be detected from both sensors, a specially designed calibration board (a rectangular board with four circular holes) is introduced. Four circle centers in 3D space are used as common features. The benefit is point features are accurate and reliable for feature matching. To extract four circle centers from the thermal camera, three steps are carried out: First, a method is proposed to accurately detect the four circles. Then, the homography matrix of the calibration board can be figured out. Lastly, 3D coordinates of the circle centers are calculated by decomposing the homography matrix. From the LiDAR frame, the four circle centers can be segmented out as long as two laser beams pass through each circle. At last, optimal extrinsic parameter is calculated by minimizing the matching error between the four pairs of 3D circle centers. Quantitative and qualitative experiments are carried out. In simulation, SLAT-Calib outperforms two methods by a large margin. In real environment, it achieves a re-projection error (RMSE) of 0.62 pixel.

Original languageEnglish
Title of host publicationIEEE International Conference on Robotics and Biomimetics, ROBIO 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages648-653
Number of pages6
ISBN (Electronic)9781728163215
DOIs
Publication statusPublished - Dec 2019
Externally publishedYes
Event2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019 - Dali, China
Duration: 6 Dec 20198 Dec 2019

Publication series

NameIEEE International Conference on Robotics and Biomimetics, ROBIO 2019

Conference

Conference2019 IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
Country/TerritoryChina
CityDali
Period6/12/198/12/19

Fingerprint

Dive into the research topics of 'SLAT-Calib: Extrinsic calibration between a sparse 3D LiDAR and a limited-FOV low-resolution thermal camera'. Together they form a unique fingerprint.

Cite this