Abstract
Optical imaging systems mounted on a Sun-synchronous satellite are probably disturbed by stray light when working in the space environment. Existing research has shown that the Visible Infrared Radiometer (VIRR) onboard the FY-3C satellite is affected by external solar stray light radiation when imaging the ground. In this paper, based on analyzing the solar stray light generation mechanism, we propose a simulation and analysis method combined with the given satellite orbit attitude model to investigate the influence of external solar stray light on VIRR’s imaging quality. We use the FY-3C orbit parameters to obtain the variation pattern of the angles between the solar vector and the payload. Based on the VIRR mechanical structure and optical scattering model, light tracing is performed to investigate the spatial distribution of irradiation on the primary mirror. The results of the occurrence time and intensity of stray light obtained by the simulation are consistent with the actual data when imaging the ground, which verifies that the proposed method is a correct and effective way to investigate the regularity of the external stray light of on-orbit payload.
Original language | English |
---|---|
Article number | 5037 |
Journal | Remote Sensing |
Volume | 13 |
Issue number | 24 |
DOIs | |
Publication status | Published - 1 Dec 2021 |
Keywords
- External stray light
- Light tracing
- Radiation distribution
- Satellite orbit
- VIRR