Abstract
Ag is a potential low-cost oxygen reduction reaction (ORR) catalyst in alkaline condition, which is important for the zinc-air batteries. Here, we report that an Ag based single atom catalyst with heteroatom coordination. Ag1-h-NPClSC, has been synthesized and shown much improved performance towards ORR by manipulating the coordination environment of the Ag center. It shows a high half wave potential (0.896 V) and a high turnover frequency (TOF) (5.9 s−1) at 0.85 V, which are higher than the previously reported Ag based catalysts and commercial Pt/C. A zinc-air battery with high peak power density of 270 mW·cm−2 is fabricated by using the Ag1-h-NPClSC as air electrode. The high performance is attributed to (1) the hollow structure providing good mass transfer; (2) the single atom metal center structure providing high utility of the Ag; (3) heteroatom coordination environment providing the adjusted binding to the ORR intermediates. Density functional theory (DFT) calculations show that the energy barrier for the formation of OOH*, which is considered as the rate determine step for ORR on Ag nanoparticles, is lowered on Ag1-h-NPClSC, thus improving the ORR activity. This work demonstrates that the well manipulated Ag based single atom catalysts are promising in electrocatalysis. [Figure not available: see fulltext.]
Original language | English |
---|---|
Pages (from-to) | 7968-7975 |
Number of pages | 8 |
Journal | Nano Research |
Volume | 15 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2022 |
Keywords
- Ag
- heteroatom coordination
- oxygen reduction
- single-atom
- zinc-air battery