TY - JOUR
T1 - Self-Enhanced Mixed Attention Network for Three-Modal Images Few-Shot Semantic Segmentation
AU - Song, Kechen
AU - Zhang, Yiming
AU - Bao, Yanqi
AU - Zhao, Ying
AU - Yan, Yunhui
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/7
Y1 - 2023/7
N2 - As an important computer vision technique, image segmentation has been widely used in various tasks. However, in some extreme cases, the insufficient illumination would result in a great impact on the performance of the model. So more and more fully supervised methods use multi-modal images as their input. The dense annotated large datasets are difficult to obtain, but the few-shot methods still can have satisfactory results with few pixel-annotated samples. Therefore, we propose the Visible-Depth-Thermal (three-modal) images few-shot semantic segmentation method. It utilizes the homogeneous information of three-modal images and the complementary information of different modal images, which can improve the performance of few-shot segmentation tasks. We constructed a novel indoor dataset VDT-2048-5i for the three-modal images few-shot semantic segmentation task. We also proposed a Self-Enhanced Mixed Attention Network (SEMANet), which consists of a Self-Enhanced module (SE) and a Mixed Attention module (MA). The SE module amplifies the difference between the different kinds of features and strengthens the weak connection for the foreground features. The MA module fuses the three-modal feature to obtain a better feature. Compared with the most advanced methods before, our model improves mIoU by 3.8% and 3.3% in 1-shot and 5-shot settings, respectively, which achieves state-of-the-art performance. In the future, we will solve failure cases by obtaining more discriminative and robust feature representations, and explore achieving high performance with fewer parameters and computational costs.
AB - As an important computer vision technique, image segmentation has been widely used in various tasks. However, in some extreme cases, the insufficient illumination would result in a great impact on the performance of the model. So more and more fully supervised methods use multi-modal images as their input. The dense annotated large datasets are difficult to obtain, but the few-shot methods still can have satisfactory results with few pixel-annotated samples. Therefore, we propose the Visible-Depth-Thermal (three-modal) images few-shot semantic segmentation method. It utilizes the homogeneous information of three-modal images and the complementary information of different modal images, which can improve the performance of few-shot segmentation tasks. We constructed a novel indoor dataset VDT-2048-5i for the three-modal images few-shot semantic segmentation task. We also proposed a Self-Enhanced Mixed Attention Network (SEMANet), which consists of a Self-Enhanced module (SE) and a Mixed Attention module (MA). The SE module amplifies the difference between the different kinds of features and strengthens the weak connection for the foreground features. The MA module fuses the three-modal feature to obtain a better feature. Compared with the most advanced methods before, our model improves mIoU by 3.8% and 3.3% in 1-shot and 5-shot settings, respectively, which achieves state-of-the-art performance. In the future, we will solve failure cases by obtaining more discriminative and robust feature representations, and explore achieving high performance with fewer parameters and computational costs.
KW - few-shot semantic segmentation
KW - multi-modal images
KW - three-modal registration
UR - http://www.scopus.com/inward/record.url?scp=85165987993&partnerID=8YFLogxK
U2 - 10.3390/s23146612
DO - 10.3390/s23146612
M3 - Article
C2 - 37514905
AN - SCOPUS:85165987993
SN - 1424-8220
VL - 23
JO - Sensors
JF - Sensors
IS - 14
M1 - 6612
ER -