Rotational nonlinear energy harvesting via an orthogonal dual-beam

Long Zhao, Ze Qi Lu*, Fei Yang Zhang, Hai Ling Fu, Hu Ding, Li Qun Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Various nonlinear energy harvesters that harvest energy from rotational motion have been investigated, but their performance at low frequencies is always deficiency. To realize the efficient harvesting of low frequency rotational motion energy, rotational nonlinear energy harvesting via an orthogonally arranged dual-beam is proposed for the first time. Based on the energy method, the electromechanical coupling equation of orthogonally arranged dual-beam in rotating motion is derived in detail. The harmonic balance method together with arc length continuation is employed to approximate the frequency response functions of the output power. To deeply explore the nonlinear dynamic behavior of the system, numerical analysis is conducted to obtain the output voltage and phase diagram in the time domain. Finally, the theoretical analysis results are verified through experiments. The results demonstrate that the vertical arrangement of nonlinear dual-beam in rotational motion effectively improved the energy harvesting efficiency at low frequencies, with excellent energy harvesting performance. This study provides an effective technical approach to energy harvesting for low frequency rotating systems.

Original languageEnglish
Article number111248
JournalMechanical Systems and Signal Processing
Volume211
DOIs
Publication statusPublished - 1 Apr 2024

Keywords

  • Energy harvesting
  • Magnetic nonlinearity
  • Orthogonal dual-beam
  • Rotational motion

Fingerprint

Dive into the research topics of 'Rotational nonlinear energy harvesting via an orthogonal dual-beam'. Together they form a unique fingerprint.

Cite this