TY - JOUR
T1 - Robust linear equation dwell time model compatible with large scale discrete surface error matrix
AU - Dong, Zhichao
AU - Cheng, Haobo
AU - Tam, Hon Yuen
N1 - Publisher Copyright:
© 2015 Optical Society of America.
PY - 2015/4/1
Y1 - 2015/4/1
N2 - The linear equation dwell time model can translate the 2D convolution process of material removal during subaperture polishing into a more intuitional expression, and may provide relatively fast and reliable results. However, the accurate solution of this ill-posed equation is not so easy, and its practicability for a large scale surface error matrix is still limited. This study first solves this ill-posed equation by Tikhonov regularization and the least square QR decomposition (LSQR) method, and automatically determines an optional interval and a typical value for the damped factor of regularization, which are dependent on the peak removal rate of tool influence functions. Then, a constrained LSQR method is presented to increase the robustness of the damped factor, which can provide more consistent dwell time maps than traditional LSQR. Finally, a matrix segmentation and stitching method is used to cope with large scale surface error matrices. Using these proposed methods, the linear equation model becomes more reliable and efficient in practical engineering.
AB - The linear equation dwell time model can translate the 2D convolution process of material removal during subaperture polishing into a more intuitional expression, and may provide relatively fast and reliable results. However, the accurate solution of this ill-posed equation is not so easy, and its practicability for a large scale surface error matrix is still limited. This study first solves this ill-posed equation by Tikhonov regularization and the least square QR decomposition (LSQR) method, and automatically determines an optional interval and a typical value for the damped factor of regularization, which are dependent on the peak removal rate of tool influence functions. Then, a constrained LSQR method is presented to increase the robustness of the damped factor, which can provide more consistent dwell time maps than traditional LSQR. Finally, a matrix segmentation and stitching method is used to cope with large scale surface error matrices. Using these proposed methods, the linear equation model becomes more reliable and efficient in practical engineering.
UR - http://www.scopus.com/inward/record.url?scp=84942371925&partnerID=8YFLogxK
U2 - 10.1364/AO.54.002747
DO - 10.1364/AO.54.002747
M3 - Article
AN - SCOPUS:84942371925
SN - 1559-128X
VL - 54
SP - 2747
EP - 2756
JO - Applied Optics
JF - Applied Optics
IS - 10
ER -