Revisiting Unsupervised Local Descriptor Learning

Wufan Wang, Lei Zhang, Hua Huang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Constructing accurate training tuples is crucial for unsupervised local descriptor learning, yet challenging due to the absence of patch labels. The state-of-the-art approach constructs tuples with heuristic rules, which struggle to precisely depict real-world patch transformations, in spite of enabling fast model convergence. A possible solution to alleviate the problem is the clustering-based approach, which can capture realistic patch variations and learn more accurate class decision boundaries, but suffers from slow model convergence. This paper presents HybridDesc, an unsupervised approach that learns powerful local descriptor models with fast convergence speed by combining the rule-based and clustering-based approaches to construct training tuples. In addition, Hybrid-Desc also contributes two concrete enhancing mechanisms: (1) a Differentiable Hyperparameter Search (DHS) strategy to find the optimal hyperparameter setting of the rule-based approach so as to provide accurate prior for the clustering-based approach, (2) an On-Demand Clustering (ODC) method to reduce the clustering overhead of the clustering-based approach without eroding its advantage. Extensive experimental results show that HybridDesc can efficiently learn local descriptors that surpass existing unsupervised local descriptors and even rival competitive supervised ones.

Original languageEnglish
Title of host publicationAAAI-23 Technical Tracks 3
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Pages2680-2688
Number of pages9
ISBN (Electronic)9781577358800
Publication statusPublished - 27 Jun 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: 7 Feb 202314 Feb 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period7/02/2314/02/23

Fingerprint

Dive into the research topics of 'Revisiting Unsupervised Local Descriptor Learning'. Together they form a unique fingerprint.

Cite this