Abstract
This paper puts forward a retina-like sensor based on a lens array, which can be used in conventional optical systems. This sensor achieves log-polar mapping by dividing the imaging optical system's image plane using a lens array. In this paper the mathematical model has been set up with the relative structural parameters. Also, the simulation experiments and parameter analysis have been discussed to verify the reliability of this system. From the experiment results, it can be seen that this sensor realized the log-polar mapping with the transformed image output. Each lens corresponded to a circular region in the image plane with no crossover between different fields of view of adjacent lenses. When the number of rings changed, the relative error did not significantly change, and this error could be reduced to 1% when the number of lenses in each ring was increased. The work widely enlarged the application of this kind of sensor, which will lay a theoretical foundation for retina-like sensors.
Original language | English |
---|---|
Pages (from-to) | 10692-10697 |
Number of pages | 6 |
Journal | Applied Optics |
Volume | 54 |
Issue number | 36 |
DOIs | |
Publication status | Published - 20 Dec 2015 |