Rethinking Trajectory Prediction in Real-World Applications: An Online Task-Free Continual Learning Perspective

Yunlong Lin, Zirui Li, Cheng Gong, Qi Liu, Chao Lu, Jianwei Gong*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Trajectory prediction is essential in improving the safety of automated vehicles (AVs), However, most learning-based models only aim to improve the trajectory prediction accuracy and are tested offline in evaluations. When additional data come from a new environment, the offline models need to be re-trained with both the new and old data to avoid catastrophic forgetting of previously learned knowledge. Moreover, all data from a new environment is assumed to be available simultaneously, conflicting with the online data collection of AVs in the real world. Considering these problems, this paper rethinks the research orientation of trajectory prediction. First, a novel learning paradigm named online task-free continual learning (OTFCL) is proposed, highlighting new goals, including learning online data from new environments efficiently and avoiding catastrophic forgetting without re-training. Then, according to the goals of OTFCL, a testing methodology is designed for a comprehensive evaluation of trajectory prediction. Finally, a state-of-the-art model is evaluated in experiments by applying the proposed testing methodology based on the INTERACTION dataset. Experimental results reveal limitations of the state-of-the-art model in real-world applications, and potential solutions based on OTFCL to overcome these limitations are also discussed.

Original languageEnglish
Title of host publication2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5020-5026
Number of pages7
ISBN (Electronic)9798350399462
DOIs
Publication statusPublished - 2023
Event26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Spain
Duration: 24 Sept 202328 Sept 2023

Publication series

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (Print)2153-0009
ISSN (Electronic)2153-0017

Conference

Conference26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
Country/TerritorySpain
CityBilbao
Period24/09/2328/09/23

Fingerprint

Dive into the research topics of 'Rethinking Trajectory Prediction in Real-World Applications: An Online Task-Free Continual Learning Perspective'. Together they form a unique fingerprint.

Cite this