Residual capacity estimation for ultracapacitors in electric vehicles using artificial neural network

Zhang Lei*, Zhenpo Wang, Xiaosong Hu, David G. Dorrell

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

29 Citations (Scopus)

Abstract

The energy storage system (ESS) plays a significant role in fulfilling the driving performance requirements and ensuring operational safety in an electric vehicle. Ultracapacitors (UCs) are being actively studied and used in parallel with batteries or fuel cells forming hybrid energy storage systems in electric vehicles. They show excellent potential in terms of the sourcing and sinking of power, particularly for the peak-power demand encountered in aggressive regenerative braking. Since there are an increasing number of ultracapacitor applications, which now includes commercial automotive applications, establishing a good model to represent their dynamics, especially the residual capacity estimation (RCE), is vital; but this is challenging. This paper presents a residual capacity estimation model which is based on an artificial neural network (ANN). This takes both charging and discharging current and temperature into consideration. The proposed ANN model comprises of three inputs and one output: the inputs are temperature, current and voltage, and the output is the residual charge. The model is trained and validated by feeding a test database which is extracted from experimental testing of ultracapacitors at different currents and temperatures on a well-established test rig. The training data should span the whole prediction scope, therefore the test currents and temperatures both vary over a wide range and cover all the possible operational conditions of the on-board ultracapacitors. The Back-Propagation (BP) algorithm, together with an early stopping strategy, is adopted to train the proposed ANN model to assure adequately accurate prediction while avoiding overfitting risks. The model performance is validated with experimental results over a set of test data randomly selected.

Original languageEnglish
Title of host publication19th IFAC World Congress IFAC 2014, Proceedings
EditorsEdward Boje, Xiaohua Xia
PublisherIFAC Secretariat
Pages3899-3904
Number of pages6
ISBN (Electronic)9783902823625
DOIs
Publication statusPublished - 2014
Event19th IFAC World Congress on International Federation of Automatic Control, IFAC 2014 - Cape Town, South Africa
Duration: 24 Aug 201429 Aug 2014

Publication series

NameIFAC Proceedings Volumes (IFAC-PapersOnline)
Volume19
ISSN (Print)1474-6670

Conference

Conference19th IFAC World Congress on International Federation of Automatic Control, IFAC 2014
Country/TerritorySouth Africa
CityCape Town
Period24/08/1429/08/14

Fingerprint

Dive into the research topics of 'Residual capacity estimation for ultracapacitors in electric vehicles using artificial neural network'. Together they form a unique fingerprint.

Cite this