@inproceedings{d2aacb59e51c4a52ad9a1f468d8509e1,
title = "Research on the image fusion and target extraction based on bionic compound eye system",
abstract = "People attach more and more importance to bionic compound eye due to its advantages such as small volume, large field of view and sensitivity to high-speed moving objects. Small field of view and large volume are the disadvantages of traditional image sensor and in order to avoid these defects, this paper intends to build a set of compound eye system based on insect compound eye structure and visual processing mechanism. In the center of this system is the primary sensor which has high resolution ratio. The primary sensor is surrounded by the other six sensors which have low resolution ratio. Based on this system, this paper will study the target image fusion and extraction method by using plane compound eye structure. This paper designs a control module which can combine the distinguishing features of high resolution image with local features of low resolution image so as to conduct target detection, recognition and location. Compared with traditional ways, the way of high resolution in the center and low resolution around makes this system own the advantages of high resolution and large field of view and enables the system to detect the object quickly and recognize the object accurately.",
keywords = "compound eye, image fusion, target extraction",
author = "Shaowei Zhang and Qun Hao and Yong Song and Zihan Wang and Kaiyu Zhang and Shiyu Zhang",
note = "Publisher Copyright: {\textcopyright} COPYRIGHT 2015 SPIE.; 2015 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, OIT 2015 ; Conference date: 17-05-2015 Through 19-05-2015",
year = "2015",
doi = "10.1117/12.2193389",
language = "English",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Kimio Tatsuno and Xiaodi Tan and Yongtian Wang",
booktitle = "2015 International Conference on Optical Instruments and Technology",
address = "United States",
}