TY - JOUR
T1 - Reaction mechanism and electronic properties of host-guest energetic material CL-20/HA under high pressure by quantum-based molecular dynamics simulations
AU - Xiao, Yiwen
AU - Chen, Lang
AU - Yang, Kun
AU - Lu, Jianying
AU - Wu, Junying
N1 - Publisher Copyright:
© 2023 The Royal Society of Chemistry.
PY - 2023/5/17
Y1 - 2023/5/17
N2 - The novel host-guest material 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)/hydroxylamine (HA) improves the detonation energy of CL-20 explosives without compromising its safety. However, the reaction mechanism of CL-20/HA under high pressure is not yet fully understood for the complex host-guest structure. A multiscale shock simulation technique by quantum-based molecular dynamics was performed to investigate the reaction mechanism of CL-20/HA under shock with different velocities along different directions, focusing on charge transfer, electronic properties, reaction path and product evolution. The structural changes caused by both insertion of HA and charge overlap between CL-20 and HA are responsible for the electronic changes and gap decrease. Directional charge transfer was observed between CL-20 and HA molecular fragments during shock in all shock loading directions, causing the CL-20 molecular group to become electrically non-neutral. The C-N bond in the CL-20 cage then broke, leading to the release of nitro and nitrous oxide at high temperatures and pressures. The HA molecules or free H atoms from HA could bond with the O atom in the nitro group, leading to the N-O bond cleavage. Some free H atoms could act as an intermediary, connecting two CL-20 molecules and forming dimeric molecules briefly. Compared with the pure CL-20 system, HA can inhibit the reaction of CL-20 in the CL-20/HA system to some extent during the initial shock stage. A further understanding of the chemical reaction mechanism and energy release in dense host-guest materials can be advanced by focusing on the microscopic internal effects of the guest molecule on the host molecule reactions.
AB - The novel host-guest material 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)/hydroxylamine (HA) improves the detonation energy of CL-20 explosives without compromising its safety. However, the reaction mechanism of CL-20/HA under high pressure is not yet fully understood for the complex host-guest structure. A multiscale shock simulation technique by quantum-based molecular dynamics was performed to investigate the reaction mechanism of CL-20/HA under shock with different velocities along different directions, focusing on charge transfer, electronic properties, reaction path and product evolution. The structural changes caused by both insertion of HA and charge overlap between CL-20 and HA are responsible for the electronic changes and gap decrease. Directional charge transfer was observed between CL-20 and HA molecular fragments during shock in all shock loading directions, causing the CL-20 molecular group to become electrically non-neutral. The C-N bond in the CL-20 cage then broke, leading to the release of nitro and nitrous oxide at high temperatures and pressures. The HA molecules or free H atoms from HA could bond with the O atom in the nitro group, leading to the N-O bond cleavage. Some free H atoms could act as an intermediary, connecting two CL-20 molecules and forming dimeric molecules briefly. Compared with the pure CL-20 system, HA can inhibit the reaction of CL-20 in the CL-20/HA system to some extent during the initial shock stage. A further understanding of the chemical reaction mechanism and energy release in dense host-guest materials can be advanced by focusing on the microscopic internal effects of the guest molecule on the host molecule reactions.
UR - http://www.scopus.com/inward/record.url?scp=85163905214&partnerID=8YFLogxK
U2 - 10.1039/d3cp01785k
DO - 10.1039/d3cp01785k
M3 - Article
C2 - 37255257
AN - SCOPUS:85163905214
SN - 1463-9076
VL - 25
SP - 15846
EP - 15854
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 23
ER -