Abstract
LIBs with improved specific capacity even more than theoretical capacity that is provided by poly (vinylidene fluoride) and silicon dioxide (PVDF/SiO2) nanofiber composite membrane separator is presented in our study. The experiment results are in agreement with simulation analysis that Si can substitute P in the LiFePO4 during the charge-discharge process and lead a great electrochemical performance. It provides a new approach to significantly improve the overall electrochemical performance. This can be described as the capacity of 175 mAh/g at 0.1 C; 160.7 mAh/g at 0.5 C and subsequent residual capacity is 168.6 mAh/g at 0.2 C after long-term cycles of 300 times and the coulombic efficiency is 98.22%. Meanwhile, the PVDF/SiO2 separators are exhibited higher porosity (131.33%) and electrolyte uptake (1514.79%) than commercial PP separator, and also evaluated reduced interfacial resistance and higher thermal property that the initial decomposition temperature is 389.05 °C. The PVDF/SiO2 separators with better performance than commercial separator apply to conventional lithium-ion batteries leads to improved electrochemical performance obviously, and can be more prospective for LIBs after multiple modified preparations.
Original language | English |
---|---|
Article number | 227759 |
Journal | Journal of Power Sources |
Volume | 451 |
DOIs | |
Publication status | Published - 1 Mar 2020 |
Keywords
- High-electrochemical performance
- Li-ion battery
- PVDF/SiO membrane
- Separator