Performance assessment of two adaptive Kalman filters for battery state-of-charge estimation

Ximing Cheng, Liguang Yao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

An accurate state of charge (SOC) is required to improve the reliability, cycle life, safety, and economics of the batteries used in power applications such as electric vehicles and smart grids. The adaptive extended Kalman filter (AEKF) is an advanced technique used to determine the SOC. The first task in estimating the SOC is to choose the initial state covariance (P0) when the process noise covariance (Qk) and the measurement noise covariance (Rk) are simultaneously estimated in the AEKF. The performance of the adaptive methods is also determined by the initial states. This study evaluates the performances of two AEKF approaches, including the Bayesian adaptive estimator (BAE) and the innovation-based adaptive estimator (IAE), which are applied to simultaneously estimate Qk and Rk. These two adaptive filtering methods are implemented on the experimental data of a real lithium-ion battery pack. Their performances, including filtering stability and convergence speed, are compared, and their impact factors are discussed.

Original languageEnglish
Title of host publicationProceedings of the 34th Chinese Control Conference, CCC 2015
EditorsQianchuan Zhao, Shirong Liu
PublisherIEEE Computer Society
Pages7843-7848
Number of pages6
ISBN (Electronic)9789881563897
DOIs
Publication statusPublished - 11 Sept 2015
Event34th Chinese Control Conference, CCC 2015 - Hangzhou, China
Duration: 28 Jul 201530 Jul 2015

Publication series

NameChinese Control Conference, CCC
Volume2015-September
ISSN (Print)1934-1768
ISSN (Electronic)2161-2927

Conference

Conference34th Chinese Control Conference, CCC 2015
Country/TerritoryChina
CityHangzhou
Period28/07/1530/07/15

Keywords

  • Adaptive extended Kalman filter
  • Equivalent circuit model
  • Lithium-ion battery
  • State of charge

Fingerprint

Dive into the research topics of 'Performance assessment of two adaptive Kalman filters for battery state-of-charge estimation'. Together they form a unique fingerprint.

Cite this