Abstract
Mono- or few-layer sheets of covalent organic frameworks (COFs) represent an attractive platform of two-dimensional materials that hold promise for tailor-made functionality and pores, through judicious design of the COF building blocks. But although a wide variety of layered COFs have been synthesized, cleaving their interlayer stacking to obtain COF sheets of uniform thickness has remained challenging. Here, we have partitioned the interlayer space in COFs by incorporating pseudorotaxane units into their backbones. Macrocyclic hosts based on crown ethers were embedded into either a ditopic or a tetratopic acylhydrazide building block. Reaction with a tritopic aldehyde linker led to the formation of acylhydrazone-based layered COFs in which one basal plane is composed of either one layer, in the case of the ditopic macrocyclic component, or two adjacent layers covalently held together by its tetratopic counterpart. When a viologen threading unit is introduced, the formation of a host–guest complex facilitates the self-exfoliation of the COFs into crystalline monolayers or bilayers, respectively. [Figure not available: see fulltext.]
Original language | English |
---|---|
Pages (from-to) | 1115-1122 |
Number of pages | 8 |
Journal | Nature Chemistry |
Volume | 12 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2020 |
Externally published | Yes |