TY - JOUR
T1 - Panoramic Gaussian mixture model and large-scale range background substraction method for PTZ camera-based surveillance systems
AU - Xue, Kang
AU - Liu, Yue
AU - Ogunmakin, Gbolabo
AU - Chen, Jing
AU - Zhang, Jiangen
PY - 2013/4
Y1 - 2013/4
N2 - In this paper, we present a novel approach for constructing a large-scale range panoramic background model that provides fast registration of the observed frame and localizes the foreground targets with arbitrary camera direction and scale in a Pan-tilt-zoom (PTZ) camera-based surveillance system. Our method consists of three stages. (1) In the first stage, a panoramic Gaussian mixture model (PGMM) of the PTZ camera's field of view is generated off-line for later use in on-line foreground detection. (2) In the second stage, a multi-layered correspondence ensemble is generated off-line from frames captured at different scales which is used by the correspondence propagation method to register observed frames online to the PGMM. (3) In the third stage, foreground is detected and the PGMM is updated. The proposed method has the capacity to deal with the PTZ camera's ability to cover a wide field of view (FOV) and large-scale range. We demonstrate the advantages of the proposed PGMM background subtraction method by incorporating it with a tracking system for surveillance applications.
AB - In this paper, we present a novel approach for constructing a large-scale range panoramic background model that provides fast registration of the observed frame and localizes the foreground targets with arbitrary camera direction and scale in a Pan-tilt-zoom (PTZ) camera-based surveillance system. Our method consists of three stages. (1) In the first stage, a panoramic Gaussian mixture model (PGMM) of the PTZ camera's field of view is generated off-line for later use in on-line foreground detection. (2) In the second stage, a multi-layered correspondence ensemble is generated off-line from frames captured at different scales which is used by the correspondence propagation method to register observed frames online to the PGMM. (3) In the third stage, foreground is detected and the PGMM is updated. The proposed method has the capacity to deal with the PTZ camera's ability to cover a wide field of view (FOV) and large-scale range. We demonstrate the advantages of the proposed PGMM background subtraction method by incorporating it with a tracking system for surveillance applications.
KW - Foreground detection
KW - Multi-layered propagation
KW - Object tracking
KW - PTZ camera
KW - Panoramic Gaussian mixture background
UR - http://www.scopus.com/inward/record.url?scp=84879688814&partnerID=8YFLogxK
U2 - 10.1007/s00138-012-0426-4
DO - 10.1007/s00138-012-0426-4
M3 - Article
AN - SCOPUS:84879688814
SN - 0932-8092
VL - 24
SP - 477
EP - 492
JO - Machine Vision and Applications
JF - Machine Vision and Applications
IS - 3
ER -