Pancharatnam–Berry geometric phase memory based on spontaneous parametric down-conversion

Wen Rong Qi, Rui Liu, Ling Jun Kong, Zhou Xiang Wang, Shuang Yin Huang, Chenghou Tu, Yongnan Li, Hui Tian Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Phase memory is an effect in which the interaction between a coherent pump beam and a nonlinear crystal generates photon pairs via the spontaneous parametric down-conversion process, then the down-converted photons (signal and idler) can carry the phase information of the pump beam. There has been much research on the memory of the dynamic phase so far; however, there is no report on the memory of non-dynamic phase, to the best of our knowledge. Here we acquire a Pancharatnam–Berry (PB) geometric phase in a physical system when light travels along a trajectory in polarization-state space. Induced coherence occurs in a cascaded scheme composed of two nonlinear crystals, when the idler photons in both crystals are aligned to be indistinguishable. A NOON (N = 2) state is established when blocking the two idler photons. We explore the PB geometric phase memory of the NOON state and induced coherence. We find that the first-order interference of the two-photon state or signal photons can be controlled by introducing the PB geometric phase to the pump light. This may facilitate precise control of the phase of the down-converted photons.

Original languageEnglish
Pages (from-to)682-685
Number of pages4
JournalOptics Letters
Volume45
Issue number3
DOIs
Publication statusPublished - 1 Feb 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Pancharatnam–Berry geometric phase memory based on spontaneous parametric down-conversion'. Together they form a unique fingerprint.

Cite this