TY - GEN
T1 - Optimization of Pulse-agile Sequence for Suppressing Range Folded Clutter Based on Diverse NLFM Waveforms
AU - Sun, Ying Hao
AU - Fan, Hua Yu
AU - Zhuang, Ruo Dan
AU - Ren, Li Xiang
AU - Mao, Er Ke
AU - Long, Teng
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/9/21
Y1 - 2020/9/21
N2 - Waveform diversity, which can be used to resolve range ambiguity and suppress range folded clutter in pulse-Doppler radar system, has attracted an increasing amount of attention in recent years. Especially for high pulse repetition frequency (PRF), the range folded clutter severely impacts the detection of small targets with long range and low speed. Using diverse waveforms, pulses of the transmitted sequence of radar are agile. It is possible to construct corresponding matched filters (MFs) to suppress the range folded clutter. However, the performance greatly depends on the cross-correlation among pulses of the transmitted sequence. In this paper, diverse nonlinear frequency modulation (NLFM) waveforms, the spectra of which are based on different window functions, are designed to construct a signal library, and positive and negative frequency modulation rate are both considered. Then, a Min-Max algorithm is proposed for sequentially selecting NLFM waveforms from the signal library to generate an optimal transmitted sequence. Pulse-to-pulse random initial phases are also added to each pulse of the sequence to further improve the irrelevance among pulses. Moreover, to eliminate the range sidelobe modulation (RSM) effect in Doppler processing, a cyclic algorithm for designing joint mismatched filters (JMMFs) with finite impulse response (FIR) is provided. Simulations show that the optimized pulse-agile sequence based on NLFM waveforms yields satisfactory performance on the ambiguity function, and range folded clutter can be effectively suppressed.
AB - Waveform diversity, which can be used to resolve range ambiguity and suppress range folded clutter in pulse-Doppler radar system, has attracted an increasing amount of attention in recent years. Especially for high pulse repetition frequency (PRF), the range folded clutter severely impacts the detection of small targets with long range and low speed. Using diverse waveforms, pulses of the transmitted sequence of radar are agile. It is possible to construct corresponding matched filters (MFs) to suppress the range folded clutter. However, the performance greatly depends on the cross-correlation among pulses of the transmitted sequence. In this paper, diverse nonlinear frequency modulation (NLFM) waveforms, the spectra of which are based on different window functions, are designed to construct a signal library, and positive and negative frequency modulation rate are both considered. Then, a Min-Max algorithm is proposed for sequentially selecting NLFM waveforms from the signal library to generate an optimal transmitted sequence. Pulse-to-pulse random initial phases are also added to each pulse of the sequence to further improve the irrelevance among pulses. Moreover, to eliminate the range sidelobe modulation (RSM) effect in Doppler processing, a cyclic algorithm for designing joint mismatched filters (JMMFs) with finite impulse response (FIR) is provided. Simulations show that the optimized pulse-agile sequence based on NLFM waveforms yields satisfactory performance on the ambiguity function, and range folded clutter can be effectively suppressed.
KW - Min-Max algorithm
KW - joint mismatched filter (JMMF)
KW - nonlinear frequency modulation (NLFM)
KW - range sidelobe modulation (RSM)
KW - waveform diversity
UR - http://www.scopus.com/inward/record.url?scp=85098570809&partnerID=8YFLogxK
U2 - 10.1109/RadarConf2043947.2020.9266559
DO - 10.1109/RadarConf2043947.2020.9266559
M3 - Conference contribution
AN - SCOPUS:85098570809
T3 - IEEE National Radar Conference - Proceedings
BT - 2020 IEEE Radar Conference, RadarConf 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Radar Conference, RadarConf 2020
Y2 - 21 September 2020 through 25 September 2020
ER -