TY - JOUR
T1 - One-Stop Extraction and In Situ RT-qPCR for Ultrasensitive Detection of Highly Diluted SARS-CoV-2 in Large-Volume Samples from Aquatic Environments
AU - Li, Shanglin
AU - Han, Bingqian
AU - Zhou, Donggen
AU - Gu, Yin
AU - Li, Bao
AU - Ma, Jianxin
AU - Fu, Rongxin
AU - Qi, Xiao
AU - Liu, Peng
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/1/31
Y1 - 2023/1/31
N2 - Surveillance of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in aquatic environments attracted attention due to its considerable impacts on human health and ecology, especially in countries with poor sanitation standards. Based on a strategy of one-stop extraction and in situ amplification, we developed an ultrasensitive method that uses a polyacrylamide derivative-modified filter disc (PAD-FD), in which highly diluted RNA can be efficiently concentrated onto the filter disc and directly used for amplification. A newly designed spin column with a cup-like filter base facilitated the non-contact transfer of the affinity filter disc from the column to a PCR tube. The limit of detection of the PAD-FD coupled with RT-qPCR is 10 copies/mL. Using 32 suspected SARS-CoV-2 samples, we demonstrated that the detection rate of our method (62.5%, 20/32) was triple the rate of the commercial kit (18.8%, 6/32). Using a PAD-FD, 56.3% (18/32) and 40.6% (13/32) of the 10-fold-dilution samples with river and tap water, respectively, were detected. Even when diluted 100-fold, 28.1% (9/32) and 37.5% (12/32) were still detected in river and tap water, respectively. We believe that the PAD-FD method offers an accurate testing tool for monitoring viral RNA in aquatic environments, contributing to the forewarning of the SARS-CoV-2 outbreak and the breaking of the transmission chain.
AB - Surveillance of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in aquatic environments attracted attention due to its considerable impacts on human health and ecology, especially in countries with poor sanitation standards. Based on a strategy of one-stop extraction and in situ amplification, we developed an ultrasensitive method that uses a polyacrylamide derivative-modified filter disc (PAD-FD), in which highly diluted RNA can be efficiently concentrated onto the filter disc and directly used for amplification. A newly designed spin column with a cup-like filter base facilitated the non-contact transfer of the affinity filter disc from the column to a PCR tube. The limit of detection of the PAD-FD coupled with RT-qPCR is 10 copies/mL. Using 32 suspected SARS-CoV-2 samples, we demonstrated that the detection rate of our method (62.5%, 20/32) was triple the rate of the commercial kit (18.8%, 6/32). Using a PAD-FD, 56.3% (18/32) and 40.6% (13/32) of the 10-fold-dilution samples with river and tap water, respectively, were detected. Even when diluted 100-fold, 28.1% (9/32) and 37.5% (12/32) were still detected in river and tap water, respectively. We believe that the PAD-FD method offers an accurate testing tool for monitoring viral RNA in aquatic environments, contributing to the forewarning of the SARS-CoV-2 outbreak and the breaking of the transmission chain.
UR - http://www.scopus.com/inward/record.url?scp=85146607148&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.2c04224
DO - 10.1021/acs.analchem.2c04224
M3 - Article
AN - SCOPUS:85146607148
SN - 0003-2700
VL - 95
SP - 2339
EP - 2347
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 4
ER -