TY - JOUR
T1 - One-pot construction of chitin-derived carbon/g-C3N4 heterojunction for the improvement of visible-light photocatalysis
AU - He, Bin
AU - Feng, Mi
AU - Chen, Xinyan
AU - Zhao, Dingwei
AU - Sun, Jian
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/10/15
Y1 - 2020/10/15
N2 - Graphitic carbon nitride (g-C3N4), as a class of metal-free photocatalyst, possesses advantageous features, such as renewability, visible-light-response, and so on. However, the obstacles of high charge recombination rate and low surface area limit its practical application. In the present work, we developed an economic and eco-friendly method to in situ construct chitin-derived carbon/g-C3N4 heterojunction (CDC/CN) to inhibit the charge recombination and increase the surface area. The structure–function relationship is studied by XRD, HRTEM, PL spectra, DRS and photoelectricity test. It revealed that the heterojunction has multi-functions in enlarging photoharvesting, reducing the band gap, and recombination rate, which are essential to improve the photocatalytic performance. As the doping precursor, chitin can adjust the terminal group and microstructure of g-C3N4 due to the unbalance of electron density in the thermal polymerization of urea, leading to nearly 10 times increment of the surface area of g-C3N4. Subsequently, visible-light-induced degradation of Rhodamine B, a normal dye pollutant, was investigated to examine the catalytic activity, where the modified g-C3N4 exhibited significant enhancement of both photocatalytic activity and reaction rate in comparison with the pristine g-C3N4.
AB - Graphitic carbon nitride (g-C3N4), as a class of metal-free photocatalyst, possesses advantageous features, such as renewability, visible-light-response, and so on. However, the obstacles of high charge recombination rate and low surface area limit its practical application. In the present work, we developed an economic and eco-friendly method to in situ construct chitin-derived carbon/g-C3N4 heterojunction (CDC/CN) to inhibit the charge recombination and increase the surface area. The structure–function relationship is studied by XRD, HRTEM, PL spectra, DRS and photoelectricity test. It revealed that the heterojunction has multi-functions in enlarging photoharvesting, reducing the band gap, and recombination rate, which are essential to improve the photocatalytic performance. As the doping precursor, chitin can adjust the terminal group and microstructure of g-C3N4 due to the unbalance of electron density in the thermal polymerization of urea, leading to nearly 10 times increment of the surface area of g-C3N4. Subsequently, visible-light-induced degradation of Rhodamine B, a normal dye pollutant, was investigated to examine the catalytic activity, where the modified g-C3N4 exhibited significant enhancement of both photocatalytic activity and reaction rate in comparison with the pristine g-C3N4.
KW - Chitin
KW - Heterojunction
KW - Photocatalysis
KW - Rh B degradation
KW - g-CN
UR - http://www.scopus.com/inward/record.url?scp=85085732141&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2020.146737
DO - 10.1016/j.apsusc.2020.146737
M3 - Article
AN - SCOPUS:85085732141
SN - 0169-4332
VL - 527
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 146737
ER -