Abstract
This paper explores a novel structure aimed at enhancing its blast resistance performance by adding a layer of polyurea coating to the steel-PVC foam-steel sandwich panel. The response of 13 different arrangements of sandwich panels under explosive loading was studied using numerical simulation. The response process can be divided into three deformation stages: (1) Fluid-structure interaction; (2) Compression of the sandwich panel; (3) Dynamic structural response. The dynamic responses of the various sandwich panels to close-range air blast loading were analyzed based on the deformation characteristics, deflection, effective plastic strain, energy absorption, and pressure of the shock wave. The study draws the following conclusions: Reasonably adding a layer of polyurea to the traditional PVC foam sandwich panel can enhance its resistance to shock wave absorption, with a maximum increase of 29.8%; the optimal arrangement for explosion resistance is steel plate-PVC foam-polyurea-steel plate when the polyurea is coated on the back; and the best quality ratio between polyurea and PVC foam is 1:7 when the polyurea is coated on the front.
Original language | English |
---|---|
Article number | 810 |
Journal | Polymers |
Volume | 16 |
Issue number | 6 |
DOIs | |
Publication status | Published - Mar 2024 |
Keywords
- PVC foam/polyurea composite
- blast loading
- dynamic response
- sandwich panel