TY - GEN
T1 - MsSVT
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
AU - Dong, Shaocong
AU - Ding, Lihe
AU - Wang, Haiyang
AU - Xu, Tingfa
AU - Xu, Xinli
AU - Bian, Ziyang
AU - Wang, Ying
AU - Wang, Jie
AU - Li, Jianan
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - 3D object detection from the LiDAR point cloud is fundamental to autonomous driving. Large-scale outdoor scenes usually feature significant variance in instance scales, thus requiring features rich in long-range and fine-grained information to support accurate detection. Recent detectors leverage the power of window-based transformers to model long-range dependencies but tend to blur out fine-grained details. To mitigate this gap, we present a novel Mixed-scale Sparse Voxel Transformer, named MsSVT, which can well capture both types of information simultaneously by the divide-and-conquer philosophy. Specifically, MsSVT explicitly divides attention heads into multiple groups, each in charge of attending to information within a particular range. All groups' output is merged to obtain the final mixed-scale features. Moreover, we provide a novel chessboard sampling strategy to reduce the computational complexity of applying a window-based transformer in 3D voxel space. To improve efficiency, we also implement the voxel sampling and gathering operations sparsely with a hash map. Endowed by the powerful capability and high efficiency of modeling mixed-scale information, our single-stage detector built on top of MsSVT surprisingly outperforms state-of-the-art two-stage detectors on Waymo. Our project page: https://github.com/dscdyc/MsSVT.
AB - 3D object detection from the LiDAR point cloud is fundamental to autonomous driving. Large-scale outdoor scenes usually feature significant variance in instance scales, thus requiring features rich in long-range and fine-grained information to support accurate detection. Recent detectors leverage the power of window-based transformers to model long-range dependencies but tend to blur out fine-grained details. To mitigate this gap, we present a novel Mixed-scale Sparse Voxel Transformer, named MsSVT, which can well capture both types of information simultaneously by the divide-and-conquer philosophy. Specifically, MsSVT explicitly divides attention heads into multiple groups, each in charge of attending to information within a particular range. All groups' output is merged to obtain the final mixed-scale features. Moreover, we provide a novel chessboard sampling strategy to reduce the computational complexity of applying a window-based transformer in 3D voxel space. To improve efficiency, we also implement the voxel sampling and gathering operations sparsely with a hash map. Endowed by the powerful capability and high efficiency of modeling mixed-scale information, our single-stage detector built on top of MsSVT surprisingly outperforms state-of-the-art two-stage detectors on Waymo. Our project page: https://github.com/dscdyc/MsSVT.
UR - http://www.scopus.com/inward/record.url?scp=85152943929&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85152943929
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
Y2 - 28 November 2022 through 9 December 2022
ER -