Motor imagery classification method based on long and short windows interception

Xiaolin Liu, Peirong Yan, Shuailei Zhang, Dezhi Zheng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Electroencephalogram (EEG) based motor imagery (MI) brain-computer interface (BCI) has emerged as a promising tool for communication and control. Most MI classification methods use fixed-length time windows to intercept signals and perform subsequent analyses. However, the fixed-length time window interception method can not achieve optimal performance due to significant differences in the multiple imagining tasks of the same subject. In this paper, we present a novel interception method using long and short windows (LSWs). This method takes advantage of the subject's motor imaginary strength at different times of the task to select specific time windows corresponding to the most salient features. The features corresponding to the selected time windows are used for the final MI classification. We compare the proposed LSW interception method with the fixed-length time window method on a public EEG dataset (BCI competition IV dataset 1) and a self-collected dataset. The results show that the classification accuracies are improved with the LSW interception method on both datasets. When using the support vector machine (SVM) classifier, the classification accuracy of common spatial pattern with the LSW method achieves 2.57% and 1.12% improvement on two datasets, respectively, and the classification accuracy of filter bank common spatial pattern (FBCSP) with the LSW method achieves 0.93% and 1.48% improvement, respectively. Among them, the classification accuracy of the LSW method with FBCSP and SVM is the highest, which is 93.43% and 91.12%, respectively. Compared with the traditional methods, this method significantly increases the classification accuracy and provides a new idea for researching the MI classification method in BCI.

Original languageEnglish
Article number085701
JournalMeasurement Science and Technology
Volume33
Issue number8
DOIs
Publication statusPublished - Aug 2022
Externally publishedYes

Keywords

  • brain-computer interface (BCI)
  • electroencephalogram (EEG)
  • motor imagery (MI)

Fingerprint

Dive into the research topics of 'Motor imagery classification method based on long and short windows interception'. Together they form a unique fingerprint.

Cite this