Modeling multidimensional user relevance in IR using vector spaces

Sagar Uprety, Yi Su, Dawei Song*, Jingfei Li

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

It has been shown that relevance judgment of documents is influenced by multiple factors beyond topicality. Some multidimensional user relevance models (MURM) proposed in literature have investigated the impact of different dimensions of relevance on user judgment. Our hypothesis is that a user might give more importance to certain relevance dimensions in a session which might change dynamically as the session progresses. This motivates the need to capture the weights of different relevance dimensions using feedback and build a model to rank documents for subsequent queries according to these weights. We propose a geometric model inspired by the mathematical framework of Quantum theory to capture the user's importance given to each dimension of relevance and test our hypothesis on data from a web search engine and TREC Session track.

Original languageEnglish
Title of host publication41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018
PublisherAssociation for Computing Machinery, Inc
Pages993-996
Number of pages4
ISBN (Electronic)9781450356572
DOIs
Publication statusPublished - 27 Jun 2018
Event41st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018 - Ann Arbor, United States
Duration: 8 Jul 201812 Jul 2018

Publication series

Name41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018

Conference

Conference41st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018
Country/TerritoryUnited States
CityAnn Arbor
Period8/07/1812/07/18

Keywords

  • Information retrieval
  • Multidimensional relevance
  • User modeling

Fingerprint

Dive into the research topics of 'Modeling multidimensional user relevance in IR using vector spaces'. Together they form a unique fingerprint.

Cite this