Model selection with the covering number of the ball of RKHS

Lizhong Ding, Shizhong Liao*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Citations (Scopus)

Abstract

Model selection in kernel methods is the problem of choosing an appropriate hypothesis space for kernel-based learning algorithms to avoid either underfitting or overfitting of the resulting hypothesis. One of main problems faced by model selection is how to control the sample complexity when designing the model selection criterion. In this paper, we take balls of reproducing kernel Hilbert spaces (RKHSs) as candidate hypothesis spaces and propose a novel model selection criterion via minimizing the empirical optimal error in the ball of RKHS and the covering number of the ball. By introducing the covering number to measure the capacity of the ball of RKHS, our criterion could directly control the sample complexity. Specifically, we first prove the relation between expected optimal error and empirical optimal error in the ball of RKHS. Using the relation as the theoretical foundation, we give the definition of our criterion. Then, by estimating the expectation of optimal empirical error and proving an upper bound of the covering number, we represent our criterion as a functional of the kernel matrix. An efficient algorithm is further developed for approximately calculating the functional so that the fast Fourier transform (FFT) can be applied to achieve a quasi-linear computational complexity. We also prove the consistency between the approximate criterion and the accurate one for large enough samples. Finally, we empirically evaluate the performance of our criterion and verify the consistency between the approximate and accurate criterion.

Original languageEnglish
Title of host publicationCIKM 2014 - Proceedings of the 2014 ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages1159-1168
Number of pages10
ISBN (Electronic)9781450325981
DOIs
Publication statusPublished - 3 Nov 2014
Externally publishedYes
Event23rd ACM International Conference on Information and Knowledge Management, CIKM 2014 - Shanghai, China
Duration: 3 Nov 20147 Nov 2014

Publication series

NameCIKM 2014 - Proceedings of the 2014 ACM International Conference on Information and Knowledge Management

Conference

Conference23rd ACM International Conference on Information and Knowledge Management, CIKM 2014
Country/TerritoryChina
CityShanghai
Period3/11/147/11/14

Keywords

  • Covering number
  • Kernel methods
  • Model selection
  • Multilevel circulant matrix

Fingerprint

Dive into the research topics of 'Model selection with the covering number of the ball of RKHS'. Together they form a unique fingerprint.

Cite this