TY - JOUR
T1 - Microwave-anion-exchange route to ultrathin cobalt-nickel-sulfide nanosheets for hybrid supercapacitors
AU - Rafai, Souleymen
AU - Qiao, Chen
AU - Naveed, Muhammad
AU - Wang, Zhitao
AU - Younas, Waqar
AU - Khalid, Syed
AU - Cao, Chuanbao
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/4/15
Y1 - 2019/4/15
N2 - The emergence of graphene-like 2D nanostructures has stimulated tremendous attention due to their fascinating physicochemical properties and promising applications in the field of energy conversion and storage. Herein, we report a gram-scale synthesis of non-layered ultrathin CoNi2S4 nanosheets via microwave-assisted liquid-phase growth of layered double hydroxide precursor poste-sulfurized at room-temperature, the method is time-saving and scalable for massive production. The CoNi2S4 nanosheets exhibit a micron-sized planar area, ultrathin thickness (∼2 nm) and mesoporous feature. When loaded on flexible carbon cloth for electrochemical capacitor, the CoNi2S4 nanosheets deliver a high specific capacitance of 247 mAh g−1 at 8 A g−1 with an excellent rate capability of 91% from 1 to 20 A g−1. Remarkably, as a positive electrode material for hybrid supercapacitor, CoNi2S4 nanosheets demonstrate excellent electrochemical performances with a high energy density of 67.7 Wh kg−1 at a power density of 0.8 kW kg−1. Even at an extreme power density of 9.6 kW kg−1, the energy density is still as high as 50.6 Wh kg−1 with a robust long-term cycling stability up to 10,000 cycles. Such results are among the best even superior to those reported for nickel-cobalt-sulfide-based materials used as positive electrode for hybrid supercapacitors.
AB - The emergence of graphene-like 2D nanostructures has stimulated tremendous attention due to their fascinating physicochemical properties and promising applications in the field of energy conversion and storage. Herein, we report a gram-scale synthesis of non-layered ultrathin CoNi2S4 nanosheets via microwave-assisted liquid-phase growth of layered double hydroxide precursor poste-sulfurized at room-temperature, the method is time-saving and scalable for massive production. The CoNi2S4 nanosheets exhibit a micron-sized planar area, ultrathin thickness (∼2 nm) and mesoporous feature. When loaded on flexible carbon cloth for electrochemical capacitor, the CoNi2S4 nanosheets deliver a high specific capacitance of 247 mAh g−1 at 8 A g−1 with an excellent rate capability of 91% from 1 to 20 A g−1. Remarkably, as a positive electrode material for hybrid supercapacitor, CoNi2S4 nanosheets demonstrate excellent electrochemical performances with a high energy density of 67.7 Wh kg−1 at a power density of 0.8 kW kg−1. Even at an extreme power density of 9.6 kW kg−1, the energy density is still as high as 50.6 Wh kg−1 with a robust long-term cycling stability up to 10,000 cycles. Such results are among the best even superior to those reported for nickel-cobalt-sulfide-based materials used as positive electrode for hybrid supercapacitors.
KW - CoNiS
KW - Freestanding nanosheets
KW - Hybrid supercapacitors
KW - Microwave-assisted synthesis
UR - http://www.scopus.com/inward/record.url?scp=85060075596&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2019.01.059
DO - 10.1016/j.cej.2019.01.059
M3 - Article
AN - SCOPUS:85060075596
SN - 1385-8947
VL - 362
SP - 576
EP - 587
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
ER -