Medical image retrieval with query-dependent feature fusion based on one-class SVM

Yonggang Huang*, Jun Zhang, Yongwang Zhao, Dianfu Ma

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Citations (Scopus)

Abstract

Due to the huge growth of the World Wide Web, medical images are now available in large numbers in online repositories, and there exists the need to retrieval the images through automatically extracting visual information of the medical images, which is commonly known as content-based image retrieval (CBIR). Since each feature extracted from images just characterizes certain aspect of image content, multiple features are necessarily employed to improve the retrieval performance. Meanwhile, experiments demonstrate that a special feature is not equally important for different image queries. Most of existed feature fusion methods for image retrieval only utilize query independent feature fusion or rely on explicit user weighting. In this paper, we present a novel query dependent feature fusion method for medical image retrieval based on one class support vector machine. Having considered that a special feature is not equally important for different image queries, the proposed query dependent feature fusion method can learn different feature fusion models for different image queries only based on multiply image samples provided by the user, and the learned feature fusion models can reflect the different importances of a special feature for different image queries. The experimental results on the IRMA medical image collection demonstrate that the proposed method can improve the retrieval performance effectively and can outperform existed feature fusion methods for image retrieval.

Original languageEnglish
Title of host publicationProceedings - 2010 13th IEEE International Conference on Computational Science and Engineering, CSE 2010
Pages176-183
Number of pages8
DOIs
Publication statusPublished - 2010
Externally publishedYes
Event2010 13th IEEE International Conference on Computational Science and Engineering, CSE 2010 - Hong Kong, China
Duration: 11 Dec 201013 Dec 2010

Publication series

NameProceedings - 2010 13th IEEE International Conference on Computational Science and Engineering, CSE 2010

Conference

Conference2010 13th IEEE International Conference on Computational Science and Engineering, CSE 2010
Country/TerritoryChina
CityHong Kong
Period11/12/1013/12/10

Fingerprint

Dive into the research topics of 'Medical image retrieval with query-dependent feature fusion based on one-class SVM'. Together they form a unique fingerprint.

Cite this