Learning Latent Structure over Deep Fusion Model of Mild Cognitive Impairment

Li Wang, Lu Zhang, Dajiang Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

Many computational models have been developed to understand Alzheimer's disease (AD) and its precursor - mild cognitive impairment (MCI) using non-invasive neural imaging techniques, i.e. magnetic resonance imaging (MRI) based imaging modalities. Most existing methods focused on identification of imaging biomarkers, classification/prediction of different clinical stages, regression of cognitive scores, or their combination as multi-task learning. Given the widely existed individual variability, however, it is still challenging to consider different learning tasks simultaneously even they share a similar goal: exploring the intrinsic alteration patterns in AD/MCI patients. Moreover, AD is a progressive neurodegenerative disorder with a long preclinical period. Besides conducting simple classification, brain changes should be considered within the entire AD/MCI progression process. Here, we introduced a novel deep fusion model for MCI using functional MRI data. We integrated autoencoder, multi-class classification and structure learning into a single deep model. During the modeling, different clinical groups including normal controls, early MCI and late MCI are considered simultaneously. With the learned discriminative representations, we not only can achieve a satisfied classification performance, but also construct a tree structure of MCI progressions.

Original languageEnglish
Title of host publicationISBI 2020 - 2020 IEEE International Symposium on Biomedical Imaging
PublisherIEEE Computer Society
Pages1039-1043
Number of pages5
ISBN (Electronic)9781538693308
DOIs
Publication statusPublished - Apr 2020
Externally publishedYes
Event17th IEEE International Symposium on Biomedical Imaging, ISBI 2020 - Iowa City, United States
Duration: 3 Apr 20207 Apr 2020

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2020-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference17th IEEE International Symposium on Biomedical Imaging, ISBI 2020
Country/TerritoryUnited States
CityIowa City
Period3/04/207/04/20

Keywords

  • autoencoder
  • deep fusion
  • fMRI
  • multi-class classification

Fingerprint

Dive into the research topics of 'Learning Latent Structure over Deep Fusion Model of Mild Cognitive Impairment'. Together they form a unique fingerprint.

Cite this