Jordan higher derivations on some operator algebras

Zhankui Xiao, Feng Wei

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Motivated by the systemic work of Lu [21, 23] we mainly consider the question of whether any Jordan higher derivation on some operator algebras is a higher derivation. Let A be a torsion free algebra over a commutative ring R, D be the set of all Jordan higher derivations D = {dn} n=0 on A, and Δ be the set of all sequences {δn}n=0 of Jordan derivations on A with δ0 = 0. Then there is a one to one correspondence between D and Δ. It is shown via this correspondence that every Jordan higher derivation on some operator algebras is a higher derivation. The involved operator algebras include CSL algebras, reexive algebras, nest algebras. At last, we describe local actions of Jordan higher derivations on nest algebras.

Original languageEnglish
Pages (from-to)275-293
Number of pages19
JournalHouston Journal of Mathematics
Volume38
Issue number1
Publication statusPublished - 2012

Keywords

  • CSL algebra
  • Jordan higher derivation
  • Nest algebra
  • Reflexive algebra

Fingerprint

Dive into the research topics of 'Jordan higher derivations on some operator algebras'. Together they form a unique fingerprint.

Cite this