TY - JOUR
T1 - I/O Efficient Early Bursting Cohesive Subgraph Discovery in Massive Temporal Networks
AU - Li, Yuan
AU - Dai, Jie
AU - Fan, Xiao Lin
AU - Zhao, Yu Hai
AU - Wang, Guo Ren
N1 - Publisher Copyright:
© 2022, Institute of Computing Technology, Chinese Academy of Sciences.
PY - 2022/12
Y1 - 2022/12
N2 - Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as representing emergency events in social media, traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive subgraph (EBCS) model based on the k-core to enable identifying the burstiness as soon as possible. To find the EBCS, we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi-external model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB.
AB - Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as representing emergency events in social media, traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive subgraph (EBCS) model based on the k-core to enable identifying the burstiness as soon as possible. To find the EBCS, we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi-external model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB.
KW - I/O efficient algorithm
KW - early bursting cohesive subgraph (EBCS)
KW - semi-external model
KW - temporal network
UR - http://www.scopus.com/inward/record.url?scp=85145354666&partnerID=8YFLogxK
U2 - 10.1007/s11390-022-2367-3
DO - 10.1007/s11390-022-2367-3
M3 - Article
AN - SCOPUS:85145354666
SN - 1000-9000
VL - 37
SP - 1337
EP - 1355
JO - Journal of Computer Science and Technology
JF - Journal of Computer Science and Technology
IS - 6
ER -