TY - JOUR
T1 - Intramolecular Assembly of Nitrobiazoles and an Ether Bridge
T2 - Toward Energetic Materials with Enhanced Energy and Safety
AU - Cai, Jinxiong
AU - Fei, Teng
AU - Li, Rui
AU - Xiong, Jin
AU - Zhang, Jinya
AU - Yin, Ping
AU - Pang, Siping
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/11/30
Y1 - 2022/11/30
N2 - Recently, the construction of novel fused-ring frameworks has become one of the most significant innovative approaches to access high-energy and thermostable energetic molecules. In this work, an ether bridge was utilized as a building block to construct energetic fused-ring skeletons for the first time. Two new [5,7,5]-tricyclic N-heterocycle-based backbones, ditriazole-1,3,6-oxadiazepine and pyrazole-triazole-1,3,6-oxadiazepine, were synthesized via a straightforward one-step synthetic route and the energetic performances of their derivatives were further evaluated. Containing an additional oxygen atom, high-density pyrazole-triazole backbone, and high crystal packing coefficient, the asymmetric molecule 2,10,11-trinitro-5H,7H-pyrazolo[1,5-c][1,2,4]triazolo[5,1-e][1,3,6]oxadiazepine (NOB-3) features a high crystal density of 1.825 g cm-3, much superior to those of the symmetrical analogues 2,10-dinitro-5H,7H-bis([1,2,4]triazolo)[1,5-c:5′,1′-e][1,3,6]oxadiazepine (NOB-4, d = 1.758 g cm-3) and D (d = 1.634 g cm-3). Meanwhile, the compounds NOB-3 and NOB-4 exhibit better thermal stability than the parent molecule DNBT (Td= 251 °C), and their decomposition temperatures reach up to 303 and 294 °C, respectively. The remarkable overall performance of NOB-3 and NOB-4 strongly suggests them as appropriate candidates for heat-resistant explosives. Our study may give new insights into the close correlation of the structural properties of energetic fused-ring frameworks, and the universality of the asymmetric heterocycles combination strategy for designing advanced high-energy density materials (HEDMs) was emphasized again.
AB - Recently, the construction of novel fused-ring frameworks has become one of the most significant innovative approaches to access high-energy and thermostable energetic molecules. In this work, an ether bridge was utilized as a building block to construct energetic fused-ring skeletons for the first time. Two new [5,7,5]-tricyclic N-heterocycle-based backbones, ditriazole-1,3,6-oxadiazepine and pyrazole-triazole-1,3,6-oxadiazepine, were synthesized via a straightforward one-step synthetic route and the energetic performances of their derivatives were further evaluated. Containing an additional oxygen atom, high-density pyrazole-triazole backbone, and high crystal packing coefficient, the asymmetric molecule 2,10,11-trinitro-5H,7H-pyrazolo[1,5-c][1,2,4]triazolo[5,1-e][1,3,6]oxadiazepine (NOB-3) features a high crystal density of 1.825 g cm-3, much superior to those of the symmetrical analogues 2,10-dinitro-5H,7H-bis([1,2,4]triazolo)[1,5-c:5′,1′-e][1,3,6]oxadiazepine (NOB-4, d = 1.758 g cm-3) and D (d = 1.634 g cm-3). Meanwhile, the compounds NOB-3 and NOB-4 exhibit better thermal stability than the parent molecule DNBT (Td= 251 °C), and their decomposition temperatures reach up to 303 and 294 °C, respectively. The remarkable overall performance of NOB-3 and NOB-4 strongly suggests them as appropriate candidates for heat-resistant explosives. Our study may give new insights into the close correlation of the structural properties of energetic fused-ring frameworks, and the universality of the asymmetric heterocycles combination strategy for designing advanced high-energy density materials (HEDMs) was emphasized again.
KW - asymmetric combination
KW - ditriazole-1,3,6-oxadiazepine
KW - heat-resistant explosive
KW - novel fused-ring frameworks
KW - pyrazole-triazole-1,3,6-oxadiazepine
UR - http://www.scopus.com/inward/record.url?scp=85142329297&partnerID=8YFLogxK
U2 - 10.1021/acsami.2c16164
DO - 10.1021/acsami.2c16164
M3 - Article
C2 - 36378162
AN - SCOPUS:85142329297
SN - 1944-8244
VL - 14
SP - 52951
EP - 52959
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 47
ER -