TY - GEN
T1 - Inferring a personalized next point-of-interest recommendation model with latent behavior patterns
AU - He, Jing
AU - Li, Xin
AU - Liao, Lejian
AU - Song, Dandan
AU - Cheung, William K.
N1 - Publisher Copyright:
© Copyright 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2016
Y1 - 2016
N2 - In this paper, we address the problem of personalized next Point-of-interest (POI) recommendation which has become an important and very challenging task in location-based social networks (LBSNs), but not well studied yet. With the conjecture that, under different contextual scenario, human exhibits distinct mobility patterns, we attempt here to jointly model the next POI recommendation under the influence of user's latent behavior pattern. We propose to adopt a third-rank tensor to model the successive check-in behaviors. By incorporating softmax function to fuse the personalized Markov chain with latent pattern, we furnish a Bayesian Personalized Ranking (BPR) approach and derive the optimization criterion accordingly. Expectation Maximization (EM) is then used to estimate the model parameters. Extensive experiments on two large-scale LBSNs datasets demonstrate the significant improvements of our model over several state-of-The-Art methods.
AB - In this paper, we address the problem of personalized next Point-of-interest (POI) recommendation which has become an important and very challenging task in location-based social networks (LBSNs), but not well studied yet. With the conjecture that, under different contextual scenario, human exhibits distinct mobility patterns, we attempt here to jointly model the next POI recommendation under the influence of user's latent behavior pattern. We propose to adopt a third-rank tensor to model the successive check-in behaviors. By incorporating softmax function to fuse the personalized Markov chain with latent pattern, we furnish a Bayesian Personalized Ranking (BPR) approach and derive the optimization criterion accordingly. Expectation Maximization (EM) is then used to estimate the model parameters. Extensive experiments on two large-scale LBSNs datasets demonstrate the significant improvements of our model over several state-of-The-Art methods.
UR - http://www.scopus.com/inward/record.url?scp=85007228132&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85007228132
T3 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
SP - 137
EP - 143
BT - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
PB - AAAI press
T2 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
Y2 - 12 February 2016 through 17 February 2016
ER -