TY - GEN
T1 - Index-based optimal algorithm for computing k-cores in large uncertain graphs
AU - Yang, Bohua
AU - Wen, Dong
AU - Qin, Lu
AU - Zhang, Ying
AU - Chang, Lijun
AU - Li, Rong Hua
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/4
Y1 - 2019/4
N2 - Uncertainty in graph data occurs for a variety of reasons, such as noise and measurement errors. Recently, uncertain graph management and analysis have attracted many research attentions. Among them, computing k-cores in uncertain graphs (aka, (k, η)-cores) is an important problem and has emerged in many applications, for example, community detection, protein-protein interaction network analysis and influence maximization. Given an uncertain graph, the (k, η)-cores can be derived by iteratively removing the vertex with an η-degree of less than k and updating the η-degrees of its neighbors. However, the results heavily depend on the two input parameters k and η, and the settings for these parameters are unique to the specific graph structure and the user's subjective requirements. Additionally, computing and updating the η-degree for each vertex is the most costly component of the algorithm, and that cost is high. To overcome these drawbacks, we have developed an index-based solution for computing (k, η)-cores in this paper. The size of the index is well bounded by O(m), where m is the number of edges in the graph. Based on this index, queries for any k and η can be answered in optimal time. Further, the method is accompanied by several different optimizations to speed up construction of the index. We conduct extensive experiments on eight real-world datasets to practically evaluate the performance of all the proposed algorithms. The results demonstrate that this index-based approach is several orders of magnitude faster at processing queries than the traditional online approaches.?
AB - Uncertainty in graph data occurs for a variety of reasons, such as noise and measurement errors. Recently, uncertain graph management and analysis have attracted many research attentions. Among them, computing k-cores in uncertain graphs (aka, (k, η)-cores) is an important problem and has emerged in many applications, for example, community detection, protein-protein interaction network analysis and influence maximization. Given an uncertain graph, the (k, η)-cores can be derived by iteratively removing the vertex with an η-degree of less than k and updating the η-degrees of its neighbors. However, the results heavily depend on the two input parameters k and η, and the settings for these parameters are unique to the specific graph structure and the user's subjective requirements. Additionally, computing and updating the η-degree for each vertex is the most costly component of the algorithm, and that cost is high. To overcome these drawbacks, we have developed an index-based solution for computing (k, η)-cores in this paper. The size of the index is well bounded by O(m), where m is the number of edges in the graph. Based on this index, queries for any k and η can be answered in optimal time. Further, the method is accompanied by several different optimizations to speed up construction of the index. We conduct extensive experiments on eight real-world datasets to practically evaluate the performance of all the proposed algorithms. The results demonstrate that this index-based approach is several orders of magnitude faster at processing queries than the traditional online approaches.?
KW - Cohesive subgraph
KW - Social network
KW - Uncertain graph
UR - http://www.scopus.com/inward/record.url?scp=85067986740&partnerID=8YFLogxK
U2 - 10.1109/ICDE.2019.00015
DO - 10.1109/ICDE.2019.00015
M3 - Conference contribution
AN - SCOPUS:85067986740
T3 - Proceedings - International Conference on Data Engineering
SP - 64
EP - 75
BT - Proceedings - 2019 IEEE 35th International Conference on Data Engineering, ICDE 2019
PB - IEEE Computer Society
T2 - 35th IEEE International Conference on Data Engineering, ICDE 2019
Y2 - 8 April 2019 through 11 April 2019
ER -