In-situ construction of cobalt oxide/ nitrogen-doped porous carbon compounds as efficient bifunctional catalysts for oxygen electrode reactions

Junting Sun, Yukan Yang, Jing Wang, Zhenhua Zhang, Junjie Guo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

The development of high-efficient bifunctional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial but challenging for renewable and sustainable energy harvesting. Here, we report a cobalt oxide/N-doped porous carbon (Co3O4/NPC) in-situ synthesized as bifunctional catalyst through hydrothermal-calcination method using glucose and urea as precursor. Benefiting from the rich oxygen-containing functional groups of glucose and the low decomposition temperature of polymerization products from urea, the obtained catalyst exhibits a hierarchically porous structure with rich oxygen vacancy under the annealing temperature as high as 800 °C. Moreover, the strongly enhanced interaction between Co3O4 and NPC derived from the in-situ synthesized method is also beneficial for the adsorption of reaction intermediates and the electron transfer capability from catalyst to adsorption oxygen, enhancing the oxygen electrode reaction activity of ctalyst. Therefore, the achieved Co3O4/NPC exhibits a superior bifunctional catalytic activity towards ORR and OER, with the potential difference of 0.8 V vs. RHE in considering the overall oxygen electrode activity, much smaller than that of RuO2 (0.96 V) and Pt/C (0.94 V). This work provides a new insight into the design of low-cost but efficient bifunctional catalyst for renewable energy applications.

Original languageEnglish
Article number154308
JournalJournal of Alloys and Compounds
Volume827
DOIs
Publication statusPublished - 25 Jun 2020
Externally publishedYes

Keywords

  • Bifunctional catalyst
  • Cobalt oxide
  • In-situ growth
  • Oxygen electrode reaction
  • Porous carbon

Fingerprint

Dive into the research topics of 'In-situ construction of cobalt oxide/ nitrogen-doped porous carbon compounds as efficient bifunctional catalysts for oxygen electrode reactions'. Together they form a unique fingerprint.

Cite this