TY - GEN
T1 - Improving bag-of-visual-words model with spatial-temporal correlation for video retrieval
AU - Wang, Lei
AU - Song, Dawei
AU - Elyan, Eyad
PY - 2012
Y1 - 2012
N2 - Most of the state-of-art approaches to Query-by-Example (QBE) video retrieval are based on the Bag-of-visual-Words (BovW) representation of visual content. It, however, ignores the spatial-temporal information, which is important for similarity measurement between videos. Direct incorporation of such information into the video data representation for a large scale data set is computationally expensive in terms of storage and similarity measurement. It is also static regardless of the change of discriminative power of visual words for different queries. To tackle these limitations, in this paper, we propose to discover Spatial-Temporal Correlations (STC) imposed by the query example to improve the BovW model for video retrieval. The STC, in terms of spatial proximity and relative motion coherence between different visual words, is crucial to identify the discriminative power of the visual words. We develop a novel technique to emphasize the most discriminative visual words for similarity measurement, and incorporate this STC-based approach into the standard inverted index architecture. Our approach is evaluated on the TRECVID2002 and CC-WEB-VIDEO datasets for two typical QBE video retrieval tasks respectively. The experimental results demonstrate that it substantially improves the BovW model as well as a state of the art method that also utilizes spatial-temporal information for QBE video retrieval.
AB - Most of the state-of-art approaches to Query-by-Example (QBE) video retrieval are based on the Bag-of-visual-Words (BovW) representation of visual content. It, however, ignores the spatial-temporal information, which is important for similarity measurement between videos. Direct incorporation of such information into the video data representation for a large scale data set is computationally expensive in terms of storage and similarity measurement. It is also static regardless of the change of discriminative power of visual words for different queries. To tackle these limitations, in this paper, we propose to discover Spatial-Temporal Correlations (STC) imposed by the query example to improve the BovW model for video retrieval. The STC, in terms of spatial proximity and relative motion coherence between different visual words, is crucial to identify the discriminative power of the visual words. We develop a novel technique to emphasize the most discriminative visual words for similarity measurement, and incorporate this STC-based approach into the standard inverted index architecture. Our approach is evaluated on the TRECVID2002 and CC-WEB-VIDEO datasets for two typical QBE video retrieval tasks respectively. The experimental results demonstrate that it substantially improves the BovW model as well as a state of the art method that also utilizes spatial-temporal information for QBE video retrieval.
KW - bag-of-visual-word
KW - content based video retrieval
KW - discriminative visual word
KW - query-by-example
KW - spatial-temporal correlation
UR - http://www.scopus.com/inward/record.url?scp=84871048635&partnerID=8YFLogxK
U2 - 10.1145/2396761.2398433
DO - 10.1145/2396761.2398433
M3 - Conference contribution
AN - SCOPUS:84871048635
SN - 9781450311564
T3 - ACM International Conference Proceeding Series
SP - 1303
EP - 1312
BT - CIKM 2012 - Proceedings of the 21st ACM International Conference on Information and Knowledge Management
T2 - 21st ACM International Conference on Information and Knowledge Management, CIKM 2012
Y2 - 29 October 2012 through 2 November 2012
ER -