Higher dimensional steady Ricci solitons with linear curvature decay

Yuxing Deng, Xiaohua Zhu

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 4
  • Captures
    • Readers: 5
see details

Abstract

We prove that any noncompact κ-noncollapsed steady (gradient) Ricci soliton with nonnegative curvature operator must be rotationally symmetric if it has linear curvature decay.

Original languageEnglish
Pages (from-to)4097-4120
Number of pages24
JournalJournal of the European Mathematical Society
Volume22
Issue number12
DOIs
Publication statusPublished - 5 Oct 2020

Keywords

  • Perelman's conjecture
  • Ricci flow
  • Ricci soliton
  • κ-solution

Fingerprint

Dive into the research topics of 'Higher dimensional steady Ricci solitons with linear curvature decay'. Together they form a unique fingerprint.

Cite this

Deng, Y., & Zhu, X. (2020). Higher dimensional steady Ricci solitons with linear curvature decay. Journal of the European Mathematical Society, 22(12), 4097-4120. https://doi.org/10.4171/JEMS/1003