Abstract
A hierarchical architecture composed of nitrogen (N)-rich carbon@graphitic carbon-coated ZnO nanowire arrays on a graphene fiber (ZnO@C/GF) was fabricated by direct growth of a ZnO@zeolitic imidazolate framework-8 (ZIF-8) core-shell nanowire array on a GF followed by annealing and used as a microelectrode for detection of 2,4,6-trinitrotoluene (TNT). In such a design, ZnO accumulated TNT through a strong nitroxide-zinc interaction and ZIF-8 served as the precursor of the N-rich carbon@graphitic carbon layer that seamlessly connected ZnO with the GF to improve the poor conductivity of ZnO, thus enhancing the sensitivity of the ZnO@C/GF microelectrode. The constructed hierarchical hybrid fiber microsensor exhibited a wide linear response to TNT in a concentration range of 0.1-32.2 μM with a low detection limit of 3.3 nM. This ZnO@C/GF microelectrode was further successfully applied to the detection of TNT in lake and tap water, indicating its promise as a portable sensor for the electrochemical detection of explosive compounds.
Original language | English |
---|---|
Pages (from-to) | 8547-8554 |
Number of pages | 8 |
Journal | ACS applied materials & interfaces |
Volume | 12 |
Issue number | 7 |
DOIs | |
Publication status | Published - 19 Feb 2020 |
Keywords
- N-rich carbon@graphitic carbon
- TNT detection
- ZnO nanowire arrays
- graphene fiber
- microelectrode