Hierarchical Inductive Transfer for Continual Dialogue Learning

Shaoxiong Feng, Xuancheng Ren, Kan Li*, Xu Sun*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Pre-trained models have achieved excellent performance on the dialogue task. However, for the continual increase of online chit-chat scenarios, directly fine-tuning these models for each of the new tasks not only explodes the capacity of the dialogue system on the embedded devices but also causes knowledge forgetting on pre-trained models and knowledge interference among diverse dialogue tasks. In this work, we propose a hierarchical inductive transfer framework to learn and deploy the dialogue skills continually and efficiently. First, we introduce the adapter module into pre-trained models for learning new dialogue tasks. As the only trainable module, it is beneficial for the dialogue system on the embedded devices to acquire new dialogue skills with negligible additional parameters. Then, for alleviating knowledge interference between tasks yet benefiting the regularization between them, we further design hierarchical inductive transfer that enables new tasks to use general knowledge in the base adapter without being misled by diverse knowledge in task-specific adapters. Empirical evaluation and analysis indicate that our framework obtains comparable performance under deployment-friendly model capacity.

Original languageEnglish
Title of host publicationACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Findings of ACL 2022
EditorsSmaranda Muresan, Preslav Nakov, Aline Villavicencio
PublisherAssociation for Computational Linguistics (ACL)
Pages693-699
Number of pages7
ISBN (Electronic)9781955917254
Publication statusPublished - 2022
Event60th Annual Meeting of the Association for Computational Linguistics, ACL 2022 - Dublin, Ireland
Duration: 22 May 202227 May 2022

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

Conference60th Annual Meeting of the Association for Computational Linguistics, ACL 2022
Country/TerritoryIreland
CityDublin
Period22/05/2227/05/22

Fingerprint

Dive into the research topics of 'Hierarchical Inductive Transfer for Continual Dialogue Learning'. Together they form a unique fingerprint.

Cite this