TY - JOUR
T1 - Grid mapping
T2 - a novel method of signal quality evaluation on a single lead electrocardiogram
AU - Li, Yanjun
AU - Tang, Xiaoying
N1 - Publisher Copyright:
© 2017, Australasian College of Physical Scientists and Engineers in Medicine.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Diagnosis of long-term electrocardiogram (ECG) calls for automatic and accurate methods of ECG signal quality estimation, not only to lighten the burden of the doctors but also to avoid misdiagnoses. In this paper, a novel waveform-based method of phase-space reconstruction for signal quality estimation on a single lead ECG was proposed by projecting the amplitude of the ECG and its first order difference into grid cells. The waveform of a single lead ECG was divided into non-overlapping episodes (Ts = 10, 20, 30 s), and the number of grids in both the width and the height of each map are in the range [20, 100] (NX = NY = 20, 30, 40, … 90, 100). The blank pane ratio (BPR) and the entropy were calculated from the distribution of ECG sampling points which were projected into the grid cells. Signal Quality Indices (SQI) bSQI and eSQI were calculated according to the BPR and the entropy, respectively. The MIT-BIH Noise Stress Test Database was used to test the performance of bSQI and eSQI on ECG signal quality estimation. The signal-to-noise ratio (SNR) during the noisy segments of the ECG records in the database is 24, 18, 12, 6, 0 and − 6 dB, respectively. For the SQI quantitative analysis, the records were divided into three groups: good quality group (24, 18 dB), moderate group (12, 6 dB) and bad quality group (0, − 6 dB). The classification among good quality group, moderate quality group and bad quality group were made by linear support-vector machine with the combination of the BPR, the entropy, the bSQI and the eSQI. The classification accuracy was 82.4% and the Cohen’s Kappa coefficient was 0.74 on a scale of NX = 40 and Ts = 20 s. In conclusion, the novel grid mapping offers an intuitive and simple approach to achieving signal quality estimation on a single lead ECG.
AB - Diagnosis of long-term electrocardiogram (ECG) calls for automatic and accurate methods of ECG signal quality estimation, not only to lighten the burden of the doctors but also to avoid misdiagnoses. In this paper, a novel waveform-based method of phase-space reconstruction for signal quality estimation on a single lead ECG was proposed by projecting the amplitude of the ECG and its first order difference into grid cells. The waveform of a single lead ECG was divided into non-overlapping episodes (Ts = 10, 20, 30 s), and the number of grids in both the width and the height of each map are in the range [20, 100] (NX = NY = 20, 30, 40, … 90, 100). The blank pane ratio (BPR) and the entropy were calculated from the distribution of ECG sampling points which were projected into the grid cells. Signal Quality Indices (SQI) bSQI and eSQI were calculated according to the BPR and the entropy, respectively. The MIT-BIH Noise Stress Test Database was used to test the performance of bSQI and eSQI on ECG signal quality estimation. The signal-to-noise ratio (SNR) during the noisy segments of the ECG records in the database is 24, 18, 12, 6, 0 and − 6 dB, respectively. For the SQI quantitative analysis, the records were divided into three groups: good quality group (24, 18 dB), moderate group (12, 6 dB) and bad quality group (0, − 6 dB). The classification among good quality group, moderate quality group and bad quality group were made by linear support-vector machine with the combination of the BPR, the entropy, the bSQI and the eSQI. The classification accuracy was 82.4% and the Cohen’s Kappa coefficient was 0.74 on a scale of NX = 40 and Ts = 20 s. In conclusion, the novel grid mapping offers an intuitive and simple approach to achieving signal quality estimation on a single lead ECG.
KW - ECG signal quality
KW - Electrocardiogram (ECG)
KW - Grid mapping
KW - Phase-space reconstruction (PSR)
KW - Signal Quality Index (SQI)
KW - The MIT-BIH Noise Stress Test Database
UR - http://www.scopus.com/inward/record.url?scp=85032346460&partnerID=8YFLogxK
U2 - 10.1007/s13246-017-0594-7
DO - 10.1007/s13246-017-0594-7
M3 - Article
C2 - 29075993
AN - SCOPUS:85032346460
SN - 0158-9938
VL - 40
SP - 895
EP - 907
JO - Australasian Physical and Engineering Sciences in Medicine
JF - Australasian Physical and Engineering Sciences in Medicine
IS - 4
ER -