TY - JOUR
T1 - Galvanic reactions at the single-nanoparticle level
T2 - Tuning between mechanistic extremes
AU - Smith, Jeremy G.
AU - Zhang, Xueqiang
AU - Jain, Prashant K.
N1 - Publisher Copyright:
© 2017 The Royal Society of Chemistry.
PY - 2017
Y1 - 2017
N2 - The formation of bimetallic nanostructures through the process of galvanic exchange of metal nanoparticle (NP) templates involves a drastic phase transformation with a complex atomistic mechanism. Using single-NP plasmonic spectroscopy, we measured the true kinetics of galvanic corrosion of Ag by Au3+ salts. An individual Ag NP undergoes an abrupt transition to the final Au/Ag alloy nanocage, limited only by the nucleation of a void. The ensemble conversion proceeds by NPs switching one at a time to the product phase. But in the presence of an increasing concentration of a Cl- additive, the transformation kinetics are altered from a nucleation-limited, co-operative "NP-to-NP" process to a transport-limited, non-cooperative, "atom-by-atom" process. The inhibition of co-operativity within a NP is the result of AgCl formation, which electrochemically insulates the reacting Ag interface from the electrolyte. The alteration of the transformation mechanism also influences the templating process and the final morphology of the product nanostructures. The findings highlight the ability of additives to dramatically alter the very nature of a phase transformation at the atomistic level, knowledge that can be utilized for corrosion inhibition and production of porous, high surface-area nanostructures for heterogeneous catalysis.
AB - The formation of bimetallic nanostructures through the process of galvanic exchange of metal nanoparticle (NP) templates involves a drastic phase transformation with a complex atomistic mechanism. Using single-NP plasmonic spectroscopy, we measured the true kinetics of galvanic corrosion of Ag by Au3+ salts. An individual Ag NP undergoes an abrupt transition to the final Au/Ag alloy nanocage, limited only by the nucleation of a void. The ensemble conversion proceeds by NPs switching one at a time to the product phase. But in the presence of an increasing concentration of a Cl- additive, the transformation kinetics are altered from a nucleation-limited, co-operative "NP-to-NP" process to a transport-limited, non-cooperative, "atom-by-atom" process. The inhibition of co-operativity within a NP is the result of AgCl formation, which electrochemically insulates the reacting Ag interface from the electrolyte. The alteration of the transformation mechanism also influences the templating process and the final morphology of the product nanostructures. The findings highlight the ability of additives to dramatically alter the very nature of a phase transformation at the atomistic level, knowledge that can be utilized for corrosion inhibition and production of porous, high surface-area nanostructures for heterogeneous catalysis.
UR - http://www.scopus.com/inward/record.url?scp=85021715341&partnerID=8YFLogxK
U2 - 10.1039/c7ta03302h
DO - 10.1039/c7ta03302h
M3 - Article
AN - SCOPUS:85021715341
SN - 2050-7488
VL - 5
SP - 11940
EP - 11948
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 23
ER -