Flatness and diffractive wavefront measurement of liquid crystal computer-generated hologram based on photoalignment technology

Yao Hu, Shihang Fu, Shaopu Wang, Wanlong Zhang, Hoi Sing Kwok

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Interferometry with computer-generated hologram (CGH) has been widely used in the field of precision optical testing and metrology. CGH can easily generate reference wavefronts of any desired shape by controlling the phase of the diffracted light. Traditional CGH is made by etching a specific pattern on a substrate, whose cost is extremely high and the phase of the diffraction wavefront is sensitive to the changes in etching depth. Based on photoalignment technology, liquid crystal (LC) can be fabricated into LC-CGH. The LC phase modulation elements made by this technology have the advantage of low cost and high accuracy. The existing phase modulation elements based on photoalignment technology are mostly qualitative phase controller, such as LC-grating and LC-wave plate. They are rarely used in high precision applications. In the field of optical testing, the high precision of diffractive wavefront of LC-CGH is critical. The wavefront changes due to phase retardation in adjacent areas of LC-CGH is affected by the flatness of the LC film. Therefore, it is essential to keep the surface of the LC-CGH flat. In this paper, we measure the surface flatness and the diffraction wavefront of the LC-CGH film to verify the feasibility of LC-CGH in optical testing. First, we introduce photoalignment technology and analyze the principle of LC-CGH. Second, we measure the surface flatness of LC-CGH. In the end, we evaluate the transmitted diffraction wavefront. The results can provide guidance for the LC-CGH process improvement.

Original languageEnglish
Title of host publication9th International Symposium on Advanced Optical Manufacturing and Testing Technologies
Subtitle of host publicationMeta-Surface-Wave and Planar Optics
EditorsChangtao Wang, Minghui Hong, Xiangang Luo, Xiong Li, Xiaoliang Ma, Mingbo Pu
PublisherSPIE
ISBN (Electronic)9781510623248
DOIs
Publication statusPublished - 2019
Event9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Meta-Surface-Wave and Planar Optics - Chengdu, China
Duration: 26 Jun 201829 Jun 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10841
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Meta-Surface-Wave and Planar Optics
Country/TerritoryChina
CityChengdu
Period26/06/1829/06/18

Keywords

  • computer-generated hologram
  • liquid crystal
  • photoalignment; flatness
  • wavefront

Fingerprint

Dive into the research topics of 'Flatness and diffractive wavefront measurement of liquid crystal computer-generated hologram based on photoalignment technology'. Together they form a unique fingerprint.

Cite this