Finite-time attitude stabilization for rigid spacecraft

Yuanqing Xia*, Jinhui Zhang, Kunfeng Lu, Ning Zhou

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

4 Citations (Scopus)

Abstract

This chapter investigates the finite-time attitude stabilization problem for rigid spacecraft in the presence of inertia uncertainties and external disturbances. Three nonsingular terminal sliding mode (NTSM) controllers are designed to make the spacecraft system converge to its equilibrium point or a region around its equilibrium point in finite time. In addition, these novel controllers are singularity-free, and the presented adaptive NTSM control (ANTSMC) laws are chattering-free. A rigorous proof of finite-time convergence is developed. The proposed ANTSMC algorithms combine NTSM, adaptation, and a constant plus power rate reaching law. Because the algorithms require no information about inertia uncertainties and external disturbances, they can be used in practical systems, where such knowledge is typically unavailable. Simulation results support the theoretical analysis.

Original languageEnglish
Title of host publicationAdvances in Industrial Control
PublisherSpringer International Publishing
Pages27-49
Number of pages23
DOIs
Publication statusPublished - 2019

Publication series

NameAdvances in Industrial Control
ISSN (Print)1430-9491
ISSN (Electronic)2193-1577

Keywords

  • Adaptive control
  • Attitude stabilization
  • Finite-time control
  • Nonsingular terminal sliding mode control

Fingerprint

Dive into the research topics of 'Finite-time attitude stabilization for rigid spacecraft'. Together they form a unique fingerprint.

Cite this