TY - JOUR
T1 - Event-triggered dual-mode predictive control for constrained nonlinear NCSs subject to disturbances and packet dropouts
AU - Hu, Xiaoda
AU - Yu, Hao
AU - Hao, Fei
N1 - Publisher Copyright:
© 2023 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2023
Y1 - 2023
N2 - In this paper, we propose an event-triggered dual-mode predictive control strategy to deal with two-channel packet dropouts for discrete-time constrained nonlinear networked control systems. The main focus is on the construction of network compensation mechanisms and control algorithms. Firstly, two types of novel event generators are set, respectively, in sensor node and controller node to reduce resource consumption while preserving the desired system performance. In order to establish corresponding event-triggering conditions, two special states, successful transmitted states and reconstructed states, are introduced. Subsequently, a dual-mode control scheme, where the switch of modes depends on reconstructed states, is designed. The recursive feasibility of optimization problems is ensured by determining relationships between actual states and reconstructed states. By constructing actual control laws under two system modes, the stability property of closed-loop systems is guaranteed. Furthermore, effects of packet dropouts and disturbances on system performance are analyzed. At last, the efficiency of the proposed control strategy is illustrated by a cart-damper-spring simulation example.
AB - In this paper, we propose an event-triggered dual-mode predictive control strategy to deal with two-channel packet dropouts for discrete-time constrained nonlinear networked control systems. The main focus is on the construction of network compensation mechanisms and control algorithms. Firstly, two types of novel event generators are set, respectively, in sensor node and controller node to reduce resource consumption while preserving the desired system performance. In order to establish corresponding event-triggering conditions, two special states, successful transmitted states and reconstructed states, are introduced. Subsequently, a dual-mode control scheme, where the switch of modes depends on reconstructed states, is designed. The recursive feasibility of optimization problems is ensured by determining relationships between actual states and reconstructed states. By constructing actual control laws under two system modes, the stability property of closed-loop systems is guaranteed. Furthermore, effects of packet dropouts and disturbances on system performance are analyzed. At last, the efficiency of the proposed control strategy is illustrated by a cart-damper-spring simulation example.
KW - Networked control systems
KW - event-triggered mechanisms
KW - external disturbances
KW - model predictive control
KW - two-channel packet dropouts
UR - http://www.scopus.com/inward/record.url?scp=85166654625&partnerID=8YFLogxK
U2 - 10.1080/00207179.2023.2241571
DO - 10.1080/00207179.2023.2241571
M3 - Article
AN - SCOPUS:85166654625
SN - 0020-7179
JO - International Journal of Control
JF - International Journal of Control
ER -