Evaluation of Correlation Between Surface Diaphragm Electromyography and Airflow Using Fixed Sample Entropy in Healthy Subjects

Xiaoyu Gu, Shuai Ren, Yan Shi*, Xiao Li, Zixuan Guo, Xuelin Zhao, Zhihao Mao, Maolin Cai, Fei Xie*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In clinic, the acquisition of airflow with nasal prongs, masks, thermistor to monitor respiratory function is more uncomfortable and inconvenience than surface diaphragm electromyography (EMGdi) using electrode pads. The EMGdi with strong electrocardiograph (ECG) interference affect the extraction of its characteristic information. In this work, surface EMGdi and airflow signals of 20 subjects were collected under 5 incremental inspiratory threshold loading protocols from quiet breathing to maximum forced breathing. First, we filtered out the ECG interference in EMGdi based on the combination of stationary wavelet transform and the positioning of ECG to obtain pure EMGdi (EMGdip). Second, the Spearman's rank correlation coefficients between EMGdi and EMGdip quantified by time series fixed sample entropy (fSampEn), root mean square (RMS), and envelope were compared to verify the robustness of the fSampEn to ECG. A comparative analysis of correlation between fSampEn of EMGdi and inspiratory airflow and the correlation between envelope of EMGdip (EMGdie) and inspiratory airflow found that there was no significant difference between the two, indicating the feasibility of using fSampEn to predict airflow. Moreover, fSampEn of EMGdi was used as characteristic parameter to build a quantitative relationship with the airflow by polynomial regression analysis. Mean coefficient of determination of all subjects in any breathing state is greater than 0.88. Finally, nonlinear programming method was used to solve a universal fitting coefficient between fSampEn of EMGdi and airflow for each subject to further evaluate the possibility of using surface EMGdi to monitor and control respiratory activity.

Original languageEnglish
Pages (from-to)238-250
Number of pages13
JournalIEEE Transactions on Neural Systems and Rehabilitation Engineering
Volume30
DOIs
Publication statusPublished - 2022

Keywords

  • Diaphragm electromyography
  • airflow
  • fixed sample entropy
  • polynomial regression analysis
  • stationary wavelet transform

Fingerprint

Dive into the research topics of 'Evaluation of Correlation Between Surface Diaphragm Electromyography and Airflow Using Fixed Sample Entropy in Healthy Subjects'. Together they form a unique fingerprint.

Cite this