Enhanced strength and plasticity of cocrnial0.1si0.1 medium entropy alloy via deformation twinning and microband at cryogenic temperature

Xiao Hua Gu, Yu Quan Meng, Hui Chang, Tian Xiang Bai, Sheng Guo Ma, Yong Qiang Zhang, Wei Dong Song*, Zhi Qiang Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The synthesis of lightweight yet strong-ductile materials has been an imperative challenge in alloy design. In this study, the CoCrNi-based medium-entropy alloys (MEAs) with added Al and Si were manufactured by vacuum arc melting furnace subsequently followed by cool rolling and anneal process. The mechanical responses of CoCrNiAl0.1Si0.1 MEAs under quasi-static (1 × 10−3 s−1 ) tensile strength showed that MEAs had an outstanding balance of yield strength, ultimate tensile strength, and elongation. The yield strength, ultimate tensile strength, and elongation were increased from 480 MPa, 900 MPa, and 58% at 298 K to 700 MPa, 1250 MPa, and 72% at 77 K, respectively. Temperature dependencies of the yield strength and strain hardening were investigated to understand the excellent mechanical performance, considering the contribution of lattice distortions, deformation twins, and microbands. Severe lattice distortions were determined to play a predominant role in the temperature-dependent yield stress. The Peierls barrier height increased with decreasing temperature, owing to thermal vibrations causing the effective width of a dislocation core to decrease. Through the thermodynamic formula, the stacking fault energies were calculated to be 14.12 mJ/m2 and 8.32 mJ/m2 at 298 K and 77 K, respectively. In conclusion, the enhanced strength and ductility at cryogenic temperature can be attributed to multiple deformation mechanisms including dislocations, extensive deformation twins, and microbands. The synergistic effect of multiple deformation mechanisms lead to the outstanding mechanical properties of the alloy at room and cryogenic temperature.

Original languageEnglish
Article number7574
JournalMaterials
Volume14
Issue number24
DOIs
Publication statusPublished - 1 Dec 2021

Keywords

  • CoCrNi-based medium-entropy alloys
  • Cryogenic temperature
  • Deformation mechanisms
  • Mechanical properties
  • Microband

Fingerprint

Dive into the research topics of 'Enhanced strength and plasticity of cocrnial0.1si0.1 medium entropy alloy via deformation twinning and microband at cryogenic temperature'. Together they form a unique fingerprint.

Cite this