Enhanced Ductility of PEEK thin film with self-assembled fibre-like crystals

Yuan Wang, Binling Chen, Ken Evans, Oana Ghita*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Poly Ether Ether Ketone (PEEK) is a high temperature polymer material known for its excellent chemical resistance, high strength and toughness. As a semi-crystalline polymer, PEEK can become very brittle during long crystallisation times and temperatures helped as well by its high content of rigid benzene rings within its chemical structure. This paper presents a simple quench crystallization method for preparation of PEEK thin films with the formation of a novel fibre-like crystal structure on the surface of the films. These quenched crystallised films show higher elongation at break when compared with conventional melt crystallised thin films incorporating spherulitic crystals, while the tensile strength of both types of films (quenched crystallised and conventional melt) remained the same. The fracture analysis carried out using microscopy revealed an interesting microstructure which evolves as a function of annealing time. Based on these results, a crystal growth mechanism describing the development of the fibre-like crystals on the surface of the quenched crystallised films is proposed.

Original languageEnglish
Article number1314
JournalScientific Reports
Volume8
Issue number1
DOIs
Publication statusPublished - 1 Dec 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Enhanced Ductility of PEEK thin film with self-assembled fibre-like crystals'. Together they form a unique fingerprint.

Cite this