Abstract
Photocatalytic CO2 reduction to high value-added fuels and chemicals is a promising strategy for alleviating both energy and environmental crises. However, the poor CO2 adsorption and activation ability seriously restrict the CO2 photoreduction activity of metal-free carbon nitride (C3N4), which is an emerging material for photocatalysis applications. In this paper, cobalt (Co) atomic clusters were modified on the surface of hierarchical urchin-like hollow C3N4 nanotubes by NaBH4 reduction, which endowed the as-designed Co atomic cluster-anchored and B-doped C3N4 (Co@B-HCN) catalyst with strong CO2 activation and CO2 photoreduction ability. Theoretical calculations and in situ characterization confirmed that the Co atomic clusters anchoring enabled the change in the bond length/angle of adsorbed CO2 molecules, as well as the change from a linear model to a bending model. This could enhance the CO2 adsorption and activation, which played a vital role in reducing the energy barrier of CO2-to-CO reaction. In addition, the construction of the hierarchical urchin-like nanostructure, the anchoring of Co atomic clusters, and the doping of B favored the surface adsorption and charge separation. Attributed to the above merits, the CO yield of Co@B-HCN photocatalyst reaches 157.51 μmol⋅g−1⋅h−1, which is approximately 22 times that of bulk C3N4. This work provides an insight for the surface engineering of C3N4 photocatalysts to realize high-performance photocatalytic CO2 reduction.
Original language | English |
---|---|
Article number | 150306 |
Journal | Chemical Engineering Journal |
Volume | 486 |
DOIs | |
Publication status | Published - 15 Apr 2024 |
Keywords
- CO activation
- CO reduction
- Carbon nitride
- Co atomic cluster
- Photocatalysis