Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes

Ning Li, Jue Wu, Sooyeon Hwang, Joseph K. Papp, Wang Hay Kan, Liang Zhang, Chenhui Zhu, Bryan D. McCloskey, Wanli Yang, Wei Tong*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

Anionic oxygen redox has aroused great interest in developing high-capacity Li-ion battery cathode materials. The fundamental understanding of this concept, compared to cationic redox, has promoted extensive studies on lithium transition metal oxides including those of 4d and 5d transition metals. Lithium ruthenium oxide has been found to exhibit a reversible anionic redox upon cycling. However, lithium-rich layered oxide with anionic redox is still facing great challenges, such as sluggish kinetics. Here we investigate the effect of cationic redox reaction on the kinetics of anionic reaction when they are strongly coupled. We report the cobalt-substituted lithium ruthenium oxide, where all Ru, Co, and O redox participate in the charge compensation mechanism in relatively defined voltage regions. The improved anionic kinetics is attributed to the fast cationic Co redox process that serves as a redox mediator. Our work sheds light on the potential direction to address the commonly believed sluggish anionic kinetics in high-capacity oxygen-redox cathode materials.

Original languageEnglish
Pages (from-to)3535-3543
Number of pages9
JournalACS Energy Letters
Volume5
Issue number11
DOIs
Publication statusPublished - 13 Nov 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Enabling Facile Anionic Kinetics through Cationic Redox Mediator in Li-Rich Layered Cathodes'. Together they form a unique fingerprint.

Cite this