Electromagnetic wave absorption performance and electrochemical properties of multifunctional materials: Air@Co@Co3Sn2@SnO2 hollow sphere/reduced graphene oxide composites

Guosheng Wen, Xiuchen Zhao*, Ying Liu, Dazhou Yan, Zhuangzhuang Hou

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

Herein, a facile and controllable structural fabrication strategy is presented for the fabrication of multinanoshell Air@metal@intermetallic@oxide-like Air@Co@Co3Sn2@SnO2 hollow spheres with a multinanoshell (HSMNS) structure using a hollow Co sphere template and a simple hydrothermal method. Composites of Air@Co@Co3Sn2@SnO2 HSMNS/reduced graphene oxide (RGO) were obtained, and the electromagnetic wave (EW) absorbing properties of the composites as microwave-absorbing materials as well as the electrochemical properties as the anode electrode materials of lithium-ion batteries (LIBs) were investigated. The obtained results demonstrate that the Air@Co@Co3Sn2@SnO2/RGO composite exhibited remarkable EW absorbing properties with an extremely high reflection loss of −55.49 dB and an ultrabroad effective absorption bandwidth of 5.43 GHz when loaded at only 5 wt% in a paraffin coating owing to the strengthened synergistic effects of the magnetic metal, resistive intermetallic, and dielectric metal oxide shells. In addition, the composite showed a superior performance with long-term cycling stability (960 mAh g−1 after 180 cycles at a current density of 0.1 A g−1) when used as the anode of an LIB. These results indicate that the composite of Air@Co@Co3Sn2@SnO2 HSMNS/RGO, which exhibits light-weight, highly efficient absorbing properties, and long-term cycling stability as the anode electrode of LIBs, has a promising future in EW absorption and electrochemical fields. We hope that this strategy will provide a new method for the construction of complex multinanoshell hollow structural materials in other research fields.

Original languageEnglish
Article number130479
JournalChemical Engineering Journal
Volume420
DOIs
Publication statusPublished - 15 Sept 2021

Keywords

  • Electromagnetic absorption properties
  • Light-weight
  • Long-term cycling stability
  • Multinanoshell hollow structure

Fingerprint

Dive into the research topics of 'Electromagnetic wave absorption performance and electrochemical properties of multifunctional materials: Air@Co@Co3Sn2@SnO2 hollow sphere/reduced graphene oxide composites'. Together they form a unique fingerprint.

Cite this